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PREFACE

From 1971 through 1973, a new sampled-data processing techni '2 for

digital signals subject to colored multiplicative noise was developed

and subsequently patented by the Principal Investigator, at NASA Langley

Research Center. In 1974, a contract was issued by the Air Force Avionics

Laboratory to determine if the same technique which provided processing

gain against diffuse Doppler-spread multipath perturbations could be

applied to anti-jam processing.

Anti-jam processing algorithms were produced under the 1974 contract,

as well as a Monte Carlo simulation package for performance evaluation.

Between 1976 and 1978, substantial evaluation of the algorithms was per-

fortmed and documented, under an extension of the contract.

A final extension of the contract, through April 1979 served to sup-

port investigation of means for implementing carrier phase estimation and

bit synchronization with the detection algorithms. This report documents

those results and gives recommendations for further research.
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SECTION I

INTRODUCTION

This report documents further research under the subject contract

whose previous results have been reported in [1,4]. The basic te,.,nical

problem is that of optimum discrete-time recursive detection of binary

signals subject to additive colored and white noise. Previous results

showed that the Minimum Probability of Error detector is one which tracks

the colored noise and subtracts it from the received data. The related

question of identification of the statistics of the colored interfering

process was extensively investigated in Reference 1.

The research effort, documented herein, was pointed toward several

related questions. First, it was desired to investigate the problem of

simulataneous estimation of the carrier phase references required by the

coherent detection algorithm. It was desired to specifically determine

the method for measuring phase and also the augmentation of the detection

algorithm required to operate with imperfect phase estimates.

Next, it was desired to investigate the possibility of non-coherent

detection with interference tracking, with application to Frequency-Shift-

Keying and Differential Phase-Shift-Keying.

A third area of interest was to determine a method for obtaining bit

synchronization for the interference-tracking detection algorithms. This

would then lead to assembly of a complete algorithm for the so-called

IDEI (Integrated Detection, Estimation, Identification) receiver.

Finally, it was desired to obtain Monte Carlo evaluation of the aug-

mented detector, operating in an environment of colored plus white addi-

tive noise.

All of the desired areas are investigated below. An expected result

is that the coherent detector performance is degraded when carrier phase

is estimated from the received data. An unexpected result is that a non-

coherent version of the interference-tracking detection algorithm does

not exist.

Recommendations are given on further research which may lead to im-

proved performance of the complete IDEI receiver.

_,



SECTION II

COHERENT DETECTION WITH PHASE ESTIMATION

1. SIGNAL AND CHANNEL MODEL

Figure 1 shows the overall model of the signal channel and signal

processor. A continuous-time signal, A(t,m), is transmitted through the

channel.

s(t,m) = A(t;m)cos[wct + c(t;m)] (1)

In (1), A( ) and 0( ) are the envelope and phase functions, respectively.

m denotes a digital symbol, which in the present work is restricted to

the binary alphabet, {O,l}. Any arbitrary signal waveform may be repre-

sented in the form of (I).

The signal is subjected to additive colored and white noise, as per

the figure. Then the bandpass signal plus noise process is translated to

baseband in two separate channels, using coherent product detection with

sinusoidal reference signals which are in phase and in phase quadrature with

the unmodulated carrier signal. Following the I-Q demodulation, the two

low-pass signal components of the signal vector are sampled to produce

a discrete-time vector. The discrete-time signal is then processed further

to recover the message symbol decisions, m.

The I-Q product demodulators require reference sinusoids having pre-

cise phase references, matched to the phase (zero) of the unmodulated

carrier signal. Since this phase is A Priori unknown, the phase reference

must be provided by the signal processor, itself, by phase estimation

from the received data vector. The reference phase, so produced, is

generally a function of time, c0 (t), as shown in Figure 2.

Since the signal phase is A Priori unknown, the signal model of (1)

may be augmented with a random (or stochastic) phase term 0 as

s(t,m) = A(t;m)cos[wct + 0(t;m) + * ]

= si(t;m)coswct - 6 (t;m)sinct (2)

where
16i (t;m ) = A(t;m)[cos0(t;m)cos0 6- sinO(t;m)sinO 6 ]

q(t;m) = A(t;m)[sinO(t;m)cosO + cos0(t;m)sinpsJ (3)

2
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trm) + n(t) os2 CO[ct + 0o(t)]

0Z q(t)

-2 sin t +

Figure 2. I-Q Carrier Demodulator

are the in-phase and quadrature low-pass components of the band-pass

A (t;m).
The I-Q components of A(t;m) form a vector

[6i (t;m)] cs s  -si ncz -A(t ;m)cos (t ;m Atm

L L: s(t;m)Ls(t ;m)] sinoa cos s [A(t;m)sin¢(t;mU  -

(4)

Likewise, the additive colored and white noises may be written in terms

of I-Q components as

Y(t) ; n(t) = (5)
rq (t n q(t)

where y(t) is the low-pass I-Q colored interference vector and n(k) is

the I-Q data vector, z(t) may then be written as

z(t) : _(t;m) + y(t) + n(t) (6)

4
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The problem of detecting the digital symbol, m, in the presence

of colored noise, white noise, and unknown signal phase is essentially

the problem of processing z(t) to make an optimum decision on m. ,nis

problem is analyzed in some detail below.

2. JOINT DETECTION WITH PHASE ESTIMATION

It is desired to reformulate the discrete-time recursive detection

problem of [1] for the present case where the signal phase is unknown and

time-varying. At this point it is still assumed that the symbol epoch,

or timing, is known. The decision problem is based on processing the

discretized I-Q data vector of (6). That is, a sequence of samples, z(tk)

is processed recursively over the period of the binary symbol, m. Bit

decision is made at the end of the symbol period. As in [1], decision-

direction is to be used from symbol to symbol, in order to preclude a

processor size which would grow exponentially with symbol sequence length.

The assumed data generating model is that of Figure 3, wherein

z(k), n(k), A(k;m), and y(k) are the sampled versions of z(t), n(t),

s(t;m), and y(t), respectively, and k is sample number. The colored

interference process, y(k), is generated from zero-mean, white, Gaussian,

unit-variance noise (a two-vector), W(k), which is independent of the

channel noise, n(k). The true structure of the . (k) generator is the set

{r ,D,A} which may also be unknown. The problem of joint identification

of {F,P,A} has been treated in Reference 1.

The decision on m is to be made according to the maximum A Posteriori

Probability (MAP) strategy. That is, a decision statistic, Sl is to be

formed recursively from theft of all data samples, z(k), taken in sequence

during the symbol period. Let Z(k) denote the 2-K vector of K samples of

the I-Q data during theq~riod.

Z(k) : [z( z(K-I) ... z(1)]T

Z(K)

5 *
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Figure 3. Data Generating Model

The MAP decision (MLsttic is the probability

SI(K,m) = p(mlZ(K)) (8)

The decision rule sa the detected sybol, m, is that one for which
sl(K,m) is maximum.

Assuming that the A Priori probability of transmitted symbols, p(m),

is known, maximization of S I(K,m) is obtained by just maximizing the

Maximum Likelihood (ML) statistic, S(K,m), where

sl1(K,m) =p m) • p(Z(K)lm )

S(K,m) = p(Z(K)m )  (9)

Now, the signal, z(k;m), is a function of an unknown phase process,

016 (k), as per Eq. (4). Thus, define a K-vector, D(K), as

6



c?() =[o(K). t (K-1),..., 0 6(l)JT

-r(K)]

K-1 )j(10)
The unknown phase process, O(K), is imbedded in the problem by using the

composite detection approach, as

p(ZK(K)lm) = ff ...f p(Z (K), j(K)jm)d.o (K) ... do6 (1) (11)

The ML decision statistic, S(K,m) is to be generated in recursive form.

Thus, the argument of the integral in (11) is manipulated to obtain a
recursive form.

We have

p(ZK(K), -D(K)I1m)=

=p(zI(K), Z (K-1) 6(K), j(K-l)Im)

-p(zK(K), o6 (KI(K-l), I(K-1), m)

=p(zK(K), 0 (K)IZ (K-I), ±~(K-1), m)

p(jNK-1)IZ(K-]), m) * p(Z(K-1)jm) (12)
Then,

p(ZK) Ijm)

ff ...f p(zK(K), 0 4(K)JZ (K-I), l(K-l), m)

(13)

and
S(K,m) = S(K-l, m)Q(K) (14)

where
Q(K) =ff.. .f p(zK(K)jo,(K), (K1, (-l m)

do (K) ... do6A) (15)

7



Now, let us define O() to be the conditional-mean estimate of 4(1),

given the data z(k) for k = 1,2,...,L, and given the symbol, m. Then,

±(t) maximizes p(j(t)j(t), m). Now, it is assumed that the gradients

of p(z(K)I6 (K), I(K-l), Z(K-l), m) and of p(O (K)I±(K-l), Z(K-]), m),

with respect to 4(K-I),..., ,6(1), evaluated in the neighborhood of

±(K-l), are sufficiently small so that the approximation may be made

Q(K) = fp(z(K)¢46 (K), O(K-l), Z(K-1), m)

p(16 (K)Z(K-I), I(K-I), m)d 6 (K)  (16)

This approximation says that the functions p(z(K)J( )) and p(O (K) ()),
viewed as functions of the 4(K-1), ..., *A(1), are sufficiently "flat"

that p(I(K-l)1( )) appears as a multi-dimensional delta function, cen-AA

tered at the co-ordinates, 06 (K-l),..., 06 (1). The multiple integral then

simply evaluates the argument at those coordinates, analagous to "sifting"

with a delta function.

Physically, the approximation means the following. If a sufficiently

accurate conditional-mean estimate may be obtained for the phase process,

q6(1),..., 6 (K-1), then the density, p(±(K-1)jZ(K-l),m), will have a

very small variance about the mean estimate. Thus, the density p(j(K-l)l

()) will be so highly concentrated that the densities, p(z(K)j( )) and

p(06 (K)I( )) will be flat by comparison. Thus, the accuracy of the ap-
proximation depends entirely on the availability of a very good phase

estimate.

Similarly, now define ;,(Z) to be the one-stage conditional-mean

prediction of 46 (K), given the previous data, Z(Z-I), the previous condi-

tional mean estimate, I(/-l), and the symbol, m. As previously, assume

that 06 (t) is sufficiently accurate so that p(z(t)l( )) is flat, by compar-

ison, in the neighborhood of (6 M. This, then, yields the final approxi-

mation

Q(K) : p(z(K) O (K), I(K-I), Z(K-I), m) (17)

The recursive decision statistic is then

8



K
S(K,m) = 7r Q(k)

k=1

K
= 7 p(z(k)l A(k), j(k-l), Z(k-l), m) (18)

k=1

It is seen from (17) and (18) that the recursive detector must form the
conditional probability function, p(z(k)j A(k), j(k-l), Z(k-l), m), at

each sample time (number) k. Moreover, operating in parallel with the
decision circuitry, and furnishing recursive phase estimates to it, is

a conditional-mean phase estimator-predictor. The estimator produces the

estimates

A(k) = E{ 6(k)jk(k-l), Z(k-l), m}

1(k) = E{4(k)jZ(k), ml (19)

The problem of conditional-mean estimation of the phase of a sinusoid

in Gaussian noise is a non-linear estimation problem without a known

general solution. However, the first-order approximate solution is known
and is a phase-locked loop [2]. The closely related approximate Maximum

A Posteriori Probability estimator is also a phase-locked loop [3]. Given

the symbol, m, and, hence, the corresponding signal waveform, s(t;m),

the bandpass received data, z(t), consists of a sine wave of unknown

(random) phase, imbedded in additive colored plus white Gaussian noise.

Thus, the available solution ti the estimation problem indicated by (14)

is the decision-directed phase-locked loop. Note that the PLL is only
the approximate solution to (19) fur the case where the phase-estimation

error is quite small. Thus, the optimality of the detection algorithm of

(18) will depend on the phase estimation accuracy which may be realized

in practice using the PLL.

3. THE I-Q DATA MODEL WITH PHASE ESTIMATION
In order to proceed with the detection and phase estimation algorithms,

the discrete-time I-Q data generation model must be extended beyond that

of equation (6) and Figure 3. Under the assumption that the I-Q demodu-
lating reference sinusoid phases are estimated, the model changes somewhat.

Let the physical model be shown in Figure 4.

9



LP zi (t)

y'(t Z)t
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Figure 4. Data Model

In Figure 4, the transmitted signal with unknown phase is

4'(t,m) = Acos[wct + O(t,m) + 0 (t)] (20)

where 0(t,m) is the angle modulation waveform, containing the symbol, m.
The unknown, possibly time-varying, phase term is 4 6(t). The additive,

zero-mean, Gaussian colored and white noises are respectively,

y'(t) = y!(t)coswct - y'(t)sinwct

n'(t) = n'(t)coswct - nq(t)sinwct (21)

where the i and q subscripts denote "in-phase" and "quadrature" low-pass

components, respectively.

The product detector reference sinusoids are

Ari(t) = 2cos[wct + d, (t)J

rq (t) = -2sin[w ct + 04(t)] (22)

10
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where 4,(t) is the phase estimate of *s(t), provided by the phase-locked
loop. The usual problem of the phase-locked loop responding to the low

frequency portion of the modulation 4(t,m) may be encountered, depending

on the exact form of the modulation.

Now define,

Mt M Ct (t) (23)

It may be shown that the low-pass I-Q data vector has the form

z csn(t) csne)] co~t +f Fy.(t)] +Fni(t)1q(t)j -sine(t) cosr(t) Asino(t,m)j q q(t)

(24)

where

i = Fcos (t) sino,(t) y(t

M [-sin^ (t) cosn is (t

With n'(t) white, Gaussian, zero-mean with variance,

also white, zero-mean, with variance or. This is r t

matrix is a rotation matrix. However, n(t) is not Gaussian, in general.

For time periods which are short compared to the reciprocal bandwidth

of s(t), n(t) appears approximately Gaussian. With v'(t) colored,
Gaussian, zero-mean, with variance Gy, £(t) is zero-mean with variance
2

ay. y(t) is not Gaussian and may be of slightly greater bandwidth than

y'(t), if the variation of 4,(t) is not small.

The new data model of (24) may be written in three equivalent forms,

and in discrete time, as

11A _ _ _ _



z(k) = H[^ (k)XH[¢O(k)i6(k;m) +X'(k) + n'(k)} (26a)

z(k) = HEc(k)]A(k;m) + y(k) + n(k) (26b)

z(k) = H[k;m]p(k) + y(k) + n(k) (26c)

where in (26)

cosE(k) sine(k)] Acos (k;m)
H[ (k)] = -sin (k) cos Ik)] ; (k;m) = iL-in(k csek- U Asinc¢(k;m) I

Fcos,(k;m) -sin,(k;m)] ) [ Acose(k)

L sino(k;m) coso(k;m) ; L-Asine(k)]

(cos. (k) -sinp (k)(
H[s (k)] M cos((27)

sF cso (k) sin 6 (k)
H[~ (k)] = Oc(k sn k)

L-sinos(k) 
cos4s(k)

In (26b), the matrix H(k;m) is a function only of the signal. The vector,

p(k), is a function only of the phase-tracking error process, e(k).

Detection of m in the presence of p(k) is a multiplicative noise detection

problem. The presence of the additive colored and white noise processes,

y(k) and n(k), respectively, gives a compound detection problem, having

multiplicative and additive colored noise.

The compound detection p'oblem for multiplicative and additive

colored Gaussian noise was solved in [4]. There it was found that the

detector was one which tracked both the multiplicative and additive color-

ed noises and attempted to remove them from the data, z(k). Although, in

the present case, the various multiplicative and additive noises are not

strictly Gaussian, the tracking detector may still be used. Note that

when e(k) is small then p(k) is approximately

_(k) = A[_ ; I(k)I << 1 R8)

In this case, e(k), the phase tracking error, is Gaussian and P(k) is

approximately Gaussian.

The final data generator diagram, corresponding to equations (26)

is shown in Figure 5.

12
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Figure 5. Data Generator Model for Phase Estimation

4. DETECTOR STRUCTURE AND ALGORITHMS

With the data generator given as in Figure 5, the tracking detector,

with phase estimator, takes the form of Figure 6. In the detector, there

are two decision-directed tracking filters, one implemented for the

signal waveform corresponding to m=O, and the other for m=l. Each tracking

filter is matched, in the Wiener sense, to both p(k), the multiplicative

noise, and y(k), the additive noise. Thus, the detectors are implemented

for the data, z(k), in the form of equation (26c). The tracking error

waveforms, L(k;m), drive the decision circuitry which produces the deci-

sion on the received symbol as Mr.

It was shown above that generally the phase estimator is decision-

directed. However, a non-decision-directed phase estimator may be imple-

mented if the transmitted signal possesses a residual unmodulated carrier

component. This is shown as follows for a phase-shift-keyed signal.

13
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Suppose that the signal phase term is

c(k;m) = Ao.c(k;m) ; c(k;m) = 1; m=O

= -1; m=l

<AO < a/2 (29)

Then

coso(k;m) = cos(AO)

sino(k;m) = c(k;m) • sin(Ap) (30)

It follows that

H[k;m]p cse(k) + c(k;m).Asin(Ap) sine(k)
(k) Acos(A) L-sinE(k)j Lcose(k)]

(31)

From (31) it is seen that there is present in the received data an addi-

tive term proportional to -sine(k), which may be used to drive the phase

estimator. Likewise, there is an additive term proportional to cose(k)

which may be used to estimate A (coherent automatic gain control). The

PSK waveform, c(k;m), is present in both I-Q channels, due to the multi-

plicative process with components sinE(k) and cose(k). Provided that the

bandwidth of c(k;m) is sufficiently wide and the closed-loop tracking

bandwidth of the phase estimator is sufficiently small, the estimator can

track phase in the presence of c(k;m) without decision-direction.
Each decision-directed tracking filter in Figure 6 is of the form

of Figure 7. In the figure, the inner loop, composed of elements Gp,

4p, AD, and H[k;m], track the multiplicative process, p(k). The elements

{G , D Ap} are the elements of a Wiener filter in Kalman canonical form,
matched to p(k). H[k,m] contains the signal waveform elements, as in (27).

The outer loop tracks the additive colored interference, y(k). The ele-

ments, {G., $., A}, are those of a Wiener filter matched to y(k). The

filter algorithms are

15
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It is seen from Figure 7 and (32) that the yAk) filter and p(k) filter
are uncoupled, except for that coupling inherent in the pseudo-innovations,

,F(k). Filter design consists of selecting the two sets of parameters

{G., 4i. A.i} and {G, pIOp Ad. The selection is based on either real-time
identification of yAk) and p(k), as per [1), or on an ad hoc worst case
design. The ad hoc design, while not optimum, would, under conditions

discussed in (l], produce acceptable results.

16
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5. THE PHASE ESTIMATOR

From equations (26c) and (31) we may write an expression for the

(continuous-time) data vector, as seen by the phase estimator, as

zcosE(t)
z(t) = A t + n(t) (33)

Lsine(t)] -

In (33), r(t) is the total noise process due to y(t), n(t), and c(t:m).

For the bandwidth of y(t) and the band-rate of c(t;m) sufficiently great

with respect to the closed loop bandwidth of the phase estimator, the

noise process, _(t), will appear white to the phase estimator.

It is seen that the problem of deriving the phase reference, @(t),

which is an accurate estimate of the residual carrier phase, p 1(t), is

that of minimizing c(t) in the presence of the unknown amplitude, A', and

noise, n(t). This is, essentially, a phase-locked loop problem. Under

the assumption that n(t) is white and Gaussian, the solution is the clas-

sical phase-locked loop.

Note that the usual problem of unknown signal amplitude, A', is

present. There are two classical solutions. One is to use the Q-channel

only, for phase estimation, with an ideal pre-limiter to remove dependence

on A'. The other solution is to also use the I-channel to estimate A'

and to then control the gain of the Q-channel. An extension of the second

method is shown in Figure 8.

In Figure 8, the Q-channel waveform, zq (t) is processed by a "Loop

Filter" with low frequency gain, H(O), to produce an estimate of the term,

(-A'sinE(t)), weighted by H(O). The I-channel waveform, zi(t), is process-

ed by a low-pass filter with unit low frequency gain to proCuce an esti-

mate of the term, A'cose(t). The two filter output terms are then divided
point-wise in a digital divider to provide an estimate of (-tanE(t)),
weighted by H(O). The latter estimate then drives the Voltage-Controlled-
Oscillator (VCO) to produce the reference phase, 4s(t). It can be seen

from the defining equation (23) for e(t) that the mechanization of

Figure 8 causes s (t) to track (t).
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Figure 8. Tangent Phase-Locked Loop

The usual phase-locked loop generates a tracking error voltage pro-

portional to (-sine(t)). The present implementation provides a tracking

error proportional to (-tanE(t)), which will yield higher loop gain for a

large tracking error, E(t). However, the main reason for using the "Tan-

gent-Loop" mechanization is to obtain the automatic gain control feature
in the cancellation of the unknown amplitude, A'.

The design of the loop parameters, notably the loop filter, is per-

formed by assuming linear operation of the loop. That is, when E(t)

is small, say less than 120 in magnitude, then the approximation holds

tanE(t) = sinE(t) = e(t) (34)

Then, the overall system operates as a linear servo-mechanism for phase,

or as a linear phase-locked loop.

In the usual implementation, the Loop Filter in the quadrature channel

is implemented with one finite zero of transmission and one finite, non-

zero, pole. The pole frequency, zero frequency, and low-frequency gain,

H(O), are set to realize the desired closed-loop noise bandwidth, static

phase error for VCO frequency offset, and second order dynamic response.

The low pass filter in the I-channel is set for the same zero and pole

frequencies as for the Q-channel Loop Filter, but with unit low-frequency

gain.

Note that for the PLL to operate properly, the signal to noise ratio

must be large in the closed-loop equivalent noise bandwidth of the loop,

itself The PLL bandwidth is to be maintained small enough to just

18



accomodate the dynamics of the received signal phase, 0,(t), due to Doppler

effects on the transmission link. For the case where the incident noise is

dominated by colored interference, such as jamming, the loop perfc nIance

will be affected by that portion of the colored interference falling with-

in the (narrow) loop bandwidth.

6. THE LOOP FILTER MECHANIZATION

The continuous-time version of the Loop Filter is characterized by

the transfer function

H(s) = K[ -z- (35)

where K, z, and p are real, with z and p being negative. Let p(t) and

z(t) denote the filter input and output, respectively. A state variable

representation is set up, using the single filter state, x(t), as

x(t) = px(t) + P(t)

z(t) = K(p-z)x(t) + Kp(t) (36)

The filter is converted to discrete time by driving it with an ideal

sampler and zero-order hold circuit and observing the output only at

sampling instants, t = tk for k = 1,2,3,.... The differential equation of

(36) is then solved between the kth and (k+l)st sampling times as

x((k+l)T) = exp[p((k+l)T-kT)] - x(kT)

+ kTf (k+ l )T exp[p(k+l)T - T]W(T)dT (37)

where

W(t) = P(kT); kT < t < (k+l)T (38)

and T is the sampling interval. The differential equation solution then

yeilds the governing difference equation (discrete-time) for the filter as

19
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x(k+l) = x(k) + yp(k)

z(k) = K(p-z)x(k) + KP(k)

0 = exp(pT) : y = I/p(O-l) (39)

The Loop Filter constants, K, z, p, are set according to specifica-

tions on the linearized closed-loop transfer function for phase. The VCO

output phase, 0 (t is given by

s(t) : f{-[ps(t) - Cs(t)].h(t)}dt (40)

or

^[%G6s) - (s)].H(s) (10 4(s) :- s (41)

where H(s) is the Loop Filter transfer function given in (35).

The closed-loop transfer function for the PLL is then

G(s) ( s )( s)s) (42)G Ts -(7s T+ H(s)

Substituting for H(s) yields

K(s-z) _ K(s-z) (43)
s + (K-p)s - Kz + 262nS + n

nn
where 6 and wnare the classical damping ratio and resonant frequency for
a second-order servo system.

The Loop Filter low frequency gain, H(O), is given by

H(O) = lim K(S-Z) = Kz (44)

s+0 s-p p

For most PLL designs the following assumptions hold

-z << H(O)

-p << K (45)

Thus, by equating like terms in the denominator of (43)

20
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K = 26w
n

-Kz= 2 (46)n

Now, it may be shown that the one-sided closed-loop noise bandwidth,

in Hz, for G(s) is [5]

=KFK-Z l  K-z = n L 6)(7

n K-p =8+6

Thus,

K= r 166 21.I1 + 4 62

L 4 +462] n
(48

For loop dynamic stability, the damping ratio is set as

6 l/Vr (49)

Then

K = 8/3 Bn

z = - 4/3 B = -K/2 (50)
n

The Loop Filter pole frequency, p, is generally set as small as

possible in magnitude. This is because p affects the "static phase error"

when tracking with a fixed Doppler offset in the received frequency. In

order to hold the loop in lock when the input phase 0 (t) has a constant

first derivative requires a constant driving voltage into the VCO and hence

a constant phase error, e(t). Thus,

d (t) - Aw = - H(O) tane5s (51)

where c is the static phase error for a Doppler offset, Aw = 2wAf. Thesp
d.c. gain of the loop filter is
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B 
2

H(O) = K z - T82 (52)

For desired small values of static phase error

3 2

2irf =32 n (53)
2 2 f- I sp

where fp is the Hertz value of -p. Thus,

B2 C
f= 32 2 n fsp (54)
P 9(2w)2  Af

Equation (54) gives the relation between the various quantities and f .p
Thus, the design equations for the quadrature channel loop filter

are

K q 8/3 Bq n

z = -4/3 B ; quadrature filter (55)
n

n sp

P 18 Af

where Esp is static phase error in radians for a Doppler offset of Af Hertz

and a closed loop noise bandwidth of Bn Hz.

For the inphase filter, the same pole, p, and zero, z, are used, but the

d.c. gain is reduced to unity to give a filter gain constant

Ki = p/z inphase filter (56)

The block diagram of the phase estimator is given in Figure 9. In

the figure, the discrete time version of the VCO (phase integrator) is

represented by

p (k+l) = ¢ (k) + T/2[v(k+l) + v(k)] (57)

where v(k) is the VCO input.
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SECTION III

ON THE EXISTANCE OF NON-COHERENT TRACKING DETECTORS

It is desired now to determine if a non-coherent version of the

tracking detector exists. In [l] the non-coherent version of the standard

FSK detector for white noise was derived. The approach for the tracking

detector will be similar. An unknown constant phase term will be intro-

duced into the formulation of the detection problem. Then, the detec-

tion statistic will be averaged with respect to the unknown phase. Up

to this point, the procedure is the same as was followed in 11.2. That is,

the problem is that of composite detection for unknown phase. In 11.2

there existed a solution of the composite detection problem which produced

a phase estimator as part of the detector. In the present formulation,

the phase estimator solution is purposely rejected and no attempt is

made to take advantage of possible phase information. Rather the unknown

phase is defined to be uniformly distributed over the interval, [0, 2ff],

and to be a constant random variable over the time interval of the signal

symbol. Then it is to be determined whether averaging the decision statis-

tic over phase produces a sufficient statistic for detection.

The unknown phase enters the problem as per Figure 2, where now

p0(t) is defined to be constant over the symbol interval, which is also

the processing time. Also 00(t) is uniformly distributed as

00(t) = 0 : 0 < t < T

p(o) = I/2f : 0 < 2f

= 0 otherwise (58)

The discrete time data model, z(k), is essentially that of (26a)

where 6 (k) 0 and @ (k) = 0. Thus,

z(k) = H(0)[A(k) + y(k) + n(k)] (59)

where A(k) is the transmitted signal, y(k) is the colored interference,

and n(k) is the white noise.

The detection statistic, S(K), is formed recursively from the z(k),

and is the Maximum A Posteriori Probability function, p(mlz(K)), where

Z(K) is the 2K partitioned vector,
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Z(K) = [z(K), z(K-l).. ,(l)]
T  (60)

The quantity, m, is the signal digit, which for the binary case is either

0 or I. Under the assumption that the transmitted digits, m, are equally

distributed (p(m) = 1/2; m=0,l), the MAP statistic is equivalent to the

Maximum-Likelihood (ML) statistic, p(Z(K)Jm). Thus, S(K) is obtained by

averaging the joint density on Z(K) and p, given m.

2,f
S(K) = p(Z(K)Jm) = f p(Z(K), plm)do

0

2n
0= Lp(z (K)Irn, fldo (61)

The conditional density, p(Z(K)Jm, ¢) is

K
p(Z(K)Jm,4) = 7 p(z(k)JZ(k-l), m, 0) (62)

k=l

Now, p(z(k)IZ(k-l), m, 0) is Gaussian, under the definition that y(k) and

n(k) are Gaussian, and is given by

p(z(k)IZ(k-l), m, cp) =

=-- exp[- _ (z(k) - z(klk-I, m, 0)) (z(k) - z(klk-I m, q)]2Tra 2  2a 2 I-lk 1 m, _ ,

V V (63)

2
In (63), a is the steady-state Innovations variance and z(kjk-l, m, p) is

the recursive estimate of the kth data sample, given all the data up

through the (k-l)st sample. This one-sample predictive estimate is ob-

tained from the Kalman-form filter of Figure 10. In the figure, the

quantities, {, A, G}, are the appropriate Kalman (Wiener) filter para-

meters for tracking y(k), the colored interference, in the presence of

n(k), the white noise.
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Figure 10. Kalman Filter

The filtering algorithms are

zK(klk-1) = H(O)[A(k) + y(kik-l) =H(O)A(k) + H(q)Afx(k-l)

x(k) = 'i()x(k-l) + u(kcp); 'i(O) [1-GH(O)A](D

_~, G~z(k) - H($46(k)) (64)

The solution to (64) at the kth sample is given by

k-l k-li-lzj(kjk-l, m, ~ H(o)[E6(k;m) + A$D[i"1 (() + T I (4)R(k-i),03)]

(65)

It is seen at this point that any hope of ̂ averaging p(ZK(K)Iin,O) over is
futile due to the internal dependency of j(kjk-l, mn, 0) on 0. That is,
it is the feedback dependency of the estimate y(kik-l, mn, ~)upon 4,which
defeats the prospect of averaging over 4,.
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Figure 11. Kalman Filter

There is a second possibility for a noncoherent implementation. The

term, H(O)y(k), in the data model of (59) is not strictly Gaussian, but

does have the same first and second moments as y(k), since H(f) is unitary.

Also, since is constant over a symbol period, H(f)l(k) has the same

short-term spectral properties as y(k). Thus, the data form may be re-

defined as

z(k) = H(O)A(k;m) + y(k) + n(k) ; 1 < k < K (66)

where y(k) and n(k) have replaced H(q)y(k) and H(f)n(k), respectively. In

(66), y(k) and n(k) are taken as Gaussian.

The resulting Kalman estimator for z(klk-l, m, 0), corresponding to

the data model of (66) is as in Figure 11.

The filtering algorithms now are

z(kjk-l, m, ) = H(O) .(k;m) + y(kik-l, m, f)

= H(O),(k;m) + Afx(k-l)

x(k) = 'x(k-l) + k(k,o) ; Y = (I-GA)s

(k;0) = G[z(k) - H(o)A(k;m)] (67)
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The solution to (67) is

^kl' k-i
z(klk-l, m, ) H( )(k;m) + h[ x(O) + -l' (k-i ,c)]

i=I

(68)

Now, (68) is somewhat of an improvement over (65) in that T is no longer

a function of 0. Unfortunately, p( ) is still dependent on 4 and this

causes the dependency of z(klk-l, m, p) on 0 to be internal because of

the feedback structure of the filter. Thus, averaging p(Z(K)m,O) over

0 is still not feasible.

The argument of the exponent of p(z(k)JZ(K-l), m, ) in (63) is

T T
Arg = (z(k) - y(klk-1, m, 0)) (.) + 6 (k;m)s(k;m )

2aT(k;m)HT(O)[z(k) - y(kik-l, m, 4)] (69)

This argument is of the same form as is encountered in the standard non-

coherent FSK detector problem [1], except that (z(k) - y(klk-l, m, 4))

has replaced z(k). Were it not for the fact that y(klk-l, m, 0) is an

explicit function of 0, as in (67), then the averaging over 4 would be

exactly the same as in the FSK problem. Unfortunately, there seems to

be no further recourse to the problem at this point.
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SECTION IV

SIMULArION RESULTS

A Monte-Carlo simulation program was written to obtain error-rate

results for coherent detection with phase estimation. The detecto algo-

rithm which was implemented was that detailed in Section 11.4. The program

realized the compound detector and phase estimator of Figure 6 where the

tracking filters were of the form given in Figure 7. The phase estimator

was the Tangent Phase-locked loop shown in Figure 9.

In order to reduce simulation run times, the Monte Carlo program,

documented in [4], was not modified for present use. Rather, an entirely

new program was written. In the new program, the data generator, shown

in Figure 5, was reduced from three states, as in [4], to one state. This

resulted in the Kalman filters also having one state in each branch

shown in Figure 7. Since computation load increases exponentially with

state size, a considerable savings was made. All that was lost was some

flexibility in modeling the additive colored noise process. For the pur-

poses of the present work, the one-state model was sufficient.

It was desired to test the compound detector and phase estimator in

a realistic but stressful environment. Thus, a phase-locked loop noise

bandwidth of 2.5 liz was chosen as being as small as could likely be real-

ized in a reasonable implementation. It was desired to run the phase-

locked loop at 0.3 radians r.m.s., phase error, or less. Thus, it was

necessary to relate the various simulation parameters, such as E/No ,

colored noise bandwidth, etc., to the phase-locked loop signal to noise

ratio.

Letting J denote the power of the colored process, y(k), (in bandpass

form) and B the one-sided equivaler* noise bandwidth of the low-pass I-Q

process, an eqivalent white bandpass spectral density, NJ. for the colored

process is defined by

J = Nj . 2 B (70)

Then, the total equivalnet white noise spectral density is

NT = NO + Nj (71)
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where N is the density of the incident additive white receiver noise.

The symbol energy, E, in the received signal is related to total sig-

nal power, S, and symbol period, T, by

E = S-T-LM(AO) (72)

where LM(A) is the "modulation loss" factor given by

L M(A ) = sin2 (AO) (73)

where A4 is phase deviation in radians for the phase-shift keyed signal.

Thus,

S L E (74)
L M(Afl*T

From (70) and (74) results

S E (75)

J LM(p).T.NJ*2BJ

Now,

(N )NO = E = (S• R ( (76)

where R = I/T is symbol rate. Thus,

N (E/N0) R (-N (77)
Nj LM(AO).(S) 2B NO

and

(E/N0) R
0 E*+ (-B-)]N0  (76)NT = [1 + LM(AO).(j) j

It is desired to compute the ratio of residual carrier power to total

white noise power in the Loop-noise bandwidth (one-sided), BN. The resi-

dual carrier power, SC is

LC(AO) E RE (79)

C =C()S L MA T tan 2(A)
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where LC(A ) is "carrier loss" given by

LC(AO) = cos2(A) (80)

The desired signal to noise ratio is

S--C - SC (R/BN)'(E/N°)(1

BN NTBN 2  (E/No) R2(81)N TN tan2(4¢)[l + 2
LM(A¢)'(j)

4ote that when the equivalent white spectral density of the colored inter-

fertn process 4s much larger than the receiver white noise spectral

density, then (81) reduces to

S__CB2 
Bj).

TIB 2 cos2 (Af)( N)()(82)

The loop phase error variance, under the assumption that the loop

is operating linearly for phase (large loop signal to noise ratio), is

given by

2= S1 radians2  (83)

N

and, from (83) and (81)

2 = tan 2 (AO + (BN/BJ)

0 tan2(AL +3

Figure 12 shows simulation results for the case of narrow-band inter-

ference for binary phase-shift-keying (PSK). The equivalent square band-

width of the colored interference process is 275 HZ. The signal symbol

rate is 2500 baud. Thus the "bandwidth to bit-rate ratio" is BW/BR =

0.109. This is the same case for which extensive previous results were

reported.
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Standard Detector

Coheent etecionI.D.E.I. Detector

White Noise Only Perfect Phase

SIMULATED ERROR RATE - COLORED INTERFERENCE

2500 Symbols/Second 10 Samples/ Symbol
Binary PSK, Mod. lndec= 0.785
Interference Bandwidth z275 Hz.:- SW/BR2 0.109
Multiplicative Noise Tracking Bandwidth a 2.5 Hz.
Phase -Locked Loop Bandwidth =2.5 Hz.
Phase Jitter _ 5 degrees, r.m.s.
Perfect Identification

SYMBOL ENERGY TO NOISE SPECTRAL DENSITY RATIO, E/N,dB.

Figure 12. Simulation Results
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For the case of Figure 12, the ratio of signal power to additive

colored noise is unity, or zero dB. A phase-locked loop is implemer"ed,

as described in Sections 11.5. and 11.6. The loop noise bandwidth is 2.5

Hz, being the smallest assumed to be practical for this case. The detec-

tor employs both additive noise tracking and multiplicative noise tracking

with the latter matched to a multiplicative noise bandwidth of 2.5 Hz.
Perfect identification is assumed for the colored additive noise.

From (84), the predicted value of loop phase jitter is determined to

be 5.40 r.m.s. The actual r.m.s. values recorded in the simulation were

between 1.70 and 9.60 for runs up to 1500 symbols in length. The loop was

observed to always be in lock, slipping no cycles during any run.

The results plotted in Figure 12 include the reference graphs of

coherent PSK detection for white noise only, and IDEI detection with per-

fect phase reference. Also, is shown the behavior of the standard

discrete-time matched filter detector. The matched filter is seen to
saturate at an error rate of 0.14, as usual [1]. The IDEI detector is

seen to yield a convex error rate curve for -10 dB < E/No < 20 dB. How-

ever, for 20 dB < E/N , the slope of the error rate curve becomes much

less steep. Although the error-rate continues to decrease for increasing

E/N , the rate of decrease is not as good as was obtained for "pure"

multiplicative noise in [4].

The implications (or "cause") of the change in slope of the error rate

curve for 20 dB < E/N0 are, at present, unknown. Clearly, there is a

transition at E/No = 20 dB for the case shown. It has been observed in

the past that such transitions may be due to the breakdown of basic

modeling assumptions on which the "optimum" detector is founded. One such

questionable assumption which is suspect here is that the multiplicative

noise process, due to carrier-tracking phase error, is Gaussian. Also, it

may be that the phase-tracking detection algorithm is subject to an ir-

reducible error-rate, as detailed in [8]. It is noted that the IDEI detec-

tor for multiplicative noise has not previously shown such an irreducible

error.

In conclusion, this simulation for the SJR = 0 dB case shows that much

of the performance measured previously for perfect phase is lost, when a

standard phase-locked loop is used in parallel with the IDEI detector. It
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is recalled that this implementation is not the true optimum, for two

reasons. One is the Gaussian multiplicative noise approximation. The

second is that the phase-tracking loop is external to the detector and,

thus, does not take advantage of the colored noise tracking capability of

the detector itself. It may well be that a more optimum implementation

will result by imbedding the phase-estimation algorithm within the detector

itself.
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SECTION V

COMPLETE RECEIVER ALGORITHMS

1. A PROPOSED BIT SYNCHRONIZATION ALGORITHM
So far in the investigation of IDEI detection, it has been assumed

that bit timing information is available. This is important for the

detector in terms of setting the start and stop times of the computation

which produces the decision statistic, S(K). However, now the synchro-

nization problem is finally examined.

Many practical bit synchronizers are based on the "Delay-lock Loop,"

[6, 7]. This technique applies to any coherent signalling scheme, but

is generally used for phase-shift-keying (PSK). Generally, the implemen-

tation uses two signal cross-correlators driven with time-staggered signal

reference waveforms. The correlator outputs are time-staggered versions
of the noisy signal autocorrelation function. By subtracting the stag-

gered autocorrelation functions, a tracking error function is produced

which drives the reference genereator into bit synchronism with the

receiver signal.

The key to the functioning of the delay-lock bit synchronizer is

the production of a signal (from the correlator output) which is a pos-

itive, even function whose maximum occurs when the reference generator is

in synchronization with the received bit. Those positive even functions

(autocorrelation functions) also happen to be the sufficient statistics

for detection for the standard detectors which use delay-lack bit synchro-

nization.

In the IDEI detector, the sufficient statistic for detection is the

pseudo-innovations process, or noise tracking error. It was seen in [1]

that there was associated with the statistic a function which was positive,

with minimum value occuring for perfect identification of the required

noise statistics. With "positive" or "negative" identification errors

(in the sense of Figures 36 and 43 of [1]), the function value increased.

The function was the variance of the noise tracking error.

Now, it is conjectured that the IDEI tracking error variance, which

is necessarily positive, will be minimum for the reference signal, A(k;n),

exactly synchronized with the received bit. It is also conjectured that

the variance will increase as the reference, A(k;n), becomes unsynchro-
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nized, reqardless of whether 6(k; n) leads or lags the received bit. If

"- this conjecture proves true, then it is a simple matter to use the recip-

rocal of the tracking error variance in the same fashion that the Delay-

Lock Loop uses the autocorrelation function, to form a synchronization

tracking error function.

2. THE COMPLETE ALGORITHM

The complete IDEI algorithm (excluding identification) can be postu-

lated as follows, for binary signalling. See Figure 13. Two IDEI detec-

tors, with imbedded phase estimators are implemented, one with early

waveform reference signals and one with late. Each detector contains two

tracking filters of the form of Figure 7. In each detector are produced

the detection statistics, SO and Si, which are the tracking error

variances, conditioned on the two different received symbols, m=O and

m=l, respectively. In each detector,symbol decision is made as usual.

Based on the symbol decision, the assumed correct tracking error variances,

Se and St, are produced by the early and late detectors, respectively.

The reciprocal of each variance is taken and the results subtracted to

form a "Synch Control" driving signal, which is filtered with suitable

gain and time constant. A modulo-2 adder is implememted to determine if

the decisions in the early and late detectors do not result in the same

detected symbol. If not, the synch. control signal is inhibited, and

synch is maintained as previously. Decision-directed reinitialization

of the filters is carried out in the usual manner, independently in the

early and late detectors.
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SECTION VI

CONCLUSIONS

The research documented in this report has yielded several interest-

ing results. These are summarized below in the order of the governing

tasks in the Contract Statement of Work.

Task 4.

The IDEI (interference-tracking) detection algorithms were extended

to include provision of the required carrier phase reference through

phase tracking. A separate phase-locked Loop was implemented, process-

ing the received data in parallel with the detection algorithm, itself.

The detection algorithm was augmented to track the multiplicative noise

resulting from the phase reference variations, as well as tracking the

colored additive noise.

Task 5.

It was shown analytically that a non-coherent version of the IDEI

detection algorithm does not exist. This result is due to the feed-

back structure inherent in the IDEI tracking filter. The internal

dependency of the detection statistic on the unknown phase makes it

impractical to carry out the phase averaging necessary to obtain a non-

coherent type algorithm.

Task 6.

Based on the result of Task 5, a non-coherent IDEI detector for

Differential Phase Shift Keying is also impractical of derivation.

Task 7.
A bit synchronization technique was proposed, based on the Early-

Late method. This bit synchronization scheme then led to the postulation

of a complete receiver algortihm including interference-tracking,

phase estimation, and bit synchronization. A block diagram of the

algorithm was given.

Task 8.

The Monte Carlo simulation routine used and reported previously

[1, 4] was restructured and re-written. The routine was simplified con-
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siderably and was augmented to accomodate the new detection and phase-

tracking algorithms. The chief reason for this effort was to achieve

shorter run times in line with restrictions imposed by the ASO C%.puter

Facility (CDC-6600).

The performance of the IDEI detector with phase tracking was eval-

uated. It was found that the performance was considerabley degraded over

previous results for perfect phase references. Two possible causes for

the degradation were discussed.

In summnary, further research on the IDEI algorithms is recommnended
in the following areas. Most importantly, a method of phase estimation

should be sought wherein the phase estimator is imbedded in the inter-

ference tracking filter. The purpose is to reduce the effects of the

large additive colored noise upon the phase estimator. Rather than

tracking phase in parallel with the colored noise tracking filters, phase

should be tracked after the colored noise has been removed from the

data. Secondly, further effort should be devoted to optimizing the

multiplicative noise tracking filter for the non-Gaussian perturbations

produced by the phase variations. Finally, the proposed bit synchroni-

zation algorithm should be studied and evaluated.
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APPENDIX A

THE CLOSED-FORM ERROR-

RATE PROGRAM

(This appendix contains listings of the newly written simulation
program and the closed-form error-rate evaluation program
reported previously.)

40



C THIS IS MAIN PROGRAM FOR THE CLOSED-FORM ERROR RATE FOR
C IMPERFECT IDENTIFICATION WHICH IS A EXTENSION OF PROGRAM YOONM5
C ** REQUIRED SUBROUTINE *iI
C (1) RES3 ;MAIN. DATA. INPUTI, INPUT2. PARALL, PREPAR
C (2) CFERAT ;CFERATWKFLT.ERF

C (3) VTT VTTCAYLEY.GAUS
C (4) EIGEN
C (5) COMAT
C REMARK
C (1) CHECKING THE CLOSED-FORM ERROR RATE FOR PERFECT
C IDENTIFICATION, SET IMODE 1 AVOIDING THE SAME EIGEN-VALUE
C IN SUB. CAYLEY
C (2) TO GET THE STEADY-STATE KALMAN GAIN, SET KSMAX 50-100
C IN GENERAL.
C (3) ESTIMATED TRANSITION MATRIX PHEER AND DPHEE ARE VARYED
C IN SUBROUTINE INPUT1 AND ESTIMATED KALMAN GAIN GSTAR IS
C VARVED IN SUBROUTINE INPUT2 EACH TIME.
C PROGRAMMER
C CHANG-JUNE VOON
C ELECTRICAL ENGINEERING DEPT.
C TEXAS A & M UNIVERSITY
C

COMMON/ORDER/N, N2
COMMON/SAMPLE/NSPB, TB. TBR
COMMON/OPTION/NOS, AEST
COMMON/RATIO/ENOD3,ENODBR. SJRDB, SJRDBRI COMMON/GDB/GN, GNR. GJ. GJR
COMMON/WORNOW/IMODE, KSMAX. lOJ
COMMON/FREO/FZ, FP (3)
COMMON/PARAM/GAMMA(6, 2). PHEE(6. 6). H(2, 6), Q(2, 2), R(2, 2)
COMMON/PARAMR/PHEER(6. 6), DPHEE(6. 6). GSTAR(6, 2), BSTAR(2, 2)
CALL ASSIGN(5, SY:RES3. DAT', 11,'RDO'. 'NC',l)

C
CALL DATA

C
C NOPTN1
C 1,NtI CHANGE
C 2. CHANGE ENODE
C 3, CHANGE SJRDBR
C 4. CHANGE NSPBGK
C NOPTN2
C 1,NO CHANGE
C 2. CHANGE ENODB
C 3. CHANGE SJRDBR
C 4, CHANGE GK
C 5. CHANGE SJRDBsSJRDBR
C IF NOPTN1,NOPTN2 IS 1, THEN NCASE1#NCASE2 IS 1 RESPECTIVELY
C NCASEI ; NUMBER OF CASE FOR NOPTNI
C NCASE2 NUMBER OF CASE FOR NOPTN2
C IPARAM
C 0.NO PRINT-OUT PARAMETERS AND STATISTICS IN INPUT1 AND INPUT2
C 1, PRINT-OUT
C IGV
C 0,NO CALCULATION KALMAN GAIN FOR A CORRECT PARAMETERS INPUTi.
C 1, CALCULATION.
C

READ(5, 701) NOPTN1, NOPTN2, NCASE1. NCASE2, IPARAM, IGV
701 FORMAT(615)

READ(5, 702) GK
702 FORMAT(E15.6)

DO 2000 II=1,NCASE1

GO TO (1.2, 3.4),NOPTNI

1GO TO 50 412 READ(5. 705) ENODB



ENUDBR-ENUOR
GO TO 50

3 READ(5. 705) SJRDBR
GO TO 50

* 4 READ(5. 707) NSPB,GK
50 CONTINUE

705 FORMAT(EIS.6)
706 FORMAT(2E15. 6)
707 FORMAT(I5.EI5.6)

C
DO 1000 III=lNCASE2
GO TO (11. 12. 13 14, 15),NOPTN2

11 GO TO 60
*12 READ(5.705) ENODB

ENODBR-ENODB
GO TO 60

13 READC5. 705) SJRDDR
GO TO 60

* 14 READ(5. 705) GK
GO TO 80

15 READ(5,706) SJRDB.SJRDBR
80 CONTINUE

C
WRITE(6. 650) NSPB. TB, ENODB. SJRDBD SJRDBRI OK.AEST

650 FORMAT(2X. 5HNSPB=. 15, 2X, 3HTB-,El3. 6,2X, 6HENODB=, E13. 6.2X,
16HSJRDD-,E13. 6,2X.7HSJRDBR=,E13. 6,2X,3HGK=,E13. 6,2X,5HAEST=.E13. 6)
CALL INPUTIC(IPARAMo IGY)
CALL INPUT2(IPARAM. GK)

CALL CFERAT(CERATCL)
C

* WRITE(6.651) ERATCL
651 FORMAT(2X. 26HCLOSED-FORM ERROR RATE IS o 30X,10OH*********=, E13.6)
1000 CONTINUE

WRITE(6. 751)
751 FORMAT(5X,1IHEND OF CASEo//)
2000 CONTINUE

STOP
END

C
SUBROUTINE DATA
COMMON/ORDER IN, N2
COMMON/SAMPLE/NSPB, TB. TBR
COfIMON/OPTION/NOS. AEST
COMhMON/RATIO/ENODD, ENODBR. SJRDB. SJRDBR
COMMON/WORNOW/IMODE. KSMAX. IOJ
COfIMON/FREQ/FZ, FP(3)

C NN2 SYSTEM ORDER
C NOS (1) P8K, (2) FSK
C AEST SIGNAL MAGNITUDE IN SUB. REFOEN
C IMODE: (1) DIAGONAL PHEE MATRIX AND PERFECT IDENTIFICATION
C (2) DIAGONAL PHEE MATRIX
C (3) GENERAL IMPERFECT IDENTIFICATION
C KSMAX: MAXIM4UM NUMBER OF ITERATION FOR STEADY-STATE KALMAN GAIN
C IGY (0) NO CALCULATION FOR CORRECT KALMAN GAIN AND VINOY IN INPUTI
C (1) CALCULATION FOR CORRECT KALMAN GAIN AND VINOY IN INPUTI
C FZ.FP: ZERO.POLE FREQUENCY FOR LOW-PASS FILTER

READ(5,600) NN2
READ(5. 601) NSPD. TB. TDR
READ(5. 602) NOB. AEST
READ(5. 603) ENODB. ENODBR. SJRDB, SJRDR
READ(5. 604) IMODEKSMAX, IOJ
READ(5.603) FZ, (FP(I). 1=1,3)

600 FORMAT(215)
601 FORMAT(I5.2E15.6) 42

62FORMAT ( 15, E 15. 6)
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-- -0 FMT T?~ C- 4M__5_6
604 FORMAT(315)

RETURN
END

SUBROUTINE INPUTI(IPARAM, IGV)
C TO GET THE REAL PARAMETERS AND STATISTICS GIVEN VALUES.
C ALL WE NEED IN HERE ARE GAMMA, PHEE. H,R
C GAIN AND VINOY ARE FOR REFERENCE
C IF ICY 0 - NO CALCULATION FOR CORRECT KALMAN GAIN AND VINOV
C 1 - CALCULATION FOR CORRECT KALMAN GAIN AND VINOY

-4C THEREFORE GK ALWAYS SET 1.. FOR PERFECT IDENTIFICATION.
[ COMMON/ORDER/N. N2

COMMON/SAMPLE/NSPB, TB, TBR
COMMON/OPT ION/NOS. AEST
COMMON/RATIO/ENODB, ENODER, SJRDDD SJRDBR

COMMON/GDB/GN, GNR, GJ,GJR
COMMON/WORNOW/IMODE, KSMAX. 100
COMMON/FREG/FZ, FP (3)
COMMUN/PARAM/GAMMA (6. 2), PHEE(6, 6) H( 2, 6). 0(2,2), R(2, 2)
DIMENSION VINOV(2,2),GAIN(6,2)
CALL PARALL( 1. , NGAMMA) PHEE, H.ENODS. SJRDB, ON, GO,R, IOV

1, GAIN, VINOV)
IF(IPARAM. EQ. 0) GO TO 40
WRITE(6, 610)

610 FORMAT(2X,32H*REAL PARAMETERS AND STATISTICS*,/)
DO 20 1=1,N
WRITE(6.611) I,GAMMA(I. 1), I.PHEE(I. I). I,H(1, I)I! 611 FORMAT(2X,SHGAMD(. 12H)=,E13. 6.2X.SHPHID(. I1.2H)=,E13.6p

12X,3HHT(, Ii,2H)= E13. 6)

20 CONTINUE
IF(ICV.EG.O) GO TO 40
WRITE(6, 615) ON

615 FORMAT(/.2X,3HGN=,El3.6)
WRITE(6. 612)

612 FORMAT(/, 2X, 5HGAIN=, 26X. 6HVINOV=)
DO 25 I=l,N2
IF(I. CT. 2) GO TO 30
WRITE(6,613) (GAIN(IJ),J=1,2),(VINOV(IJ).J=1,2)

613 FORMAT(2X, 2E13. 6.5X.2El3. 6)
GO TO 25

30 WRITE(6.614) (GAIN(IJ)sJ=1,2)
614 FORMAT(2X, 2E13.6)
25 CONTINUE
40 CONTINUE

WRITE(6,617) BN
617 FORMAT(/, 2X. 21HEOUIVALENT BANDWIDTH- E13. 6./)

RETURN
END

C
SUBROUTINE INPUT2( IPARAMoGK)

C THIS SUBROUTINE OSTAR AND DPHEE FOR DIFFERENT FILTER BANDWIDTH
C THESE OSTAR AND DPHEE WITH GAMMA. PHEE. H,R ARE USED TO CALCULATE
C RESIDUAL VARIANCE IN SUBROUTINE CFERAT AND VTT.
C THEREFORE ICV ALWAYS SET 1 HERE.

COMMON/ORDER/N, N2
COMMON/RATIO/ENODB, ENODBR. SJRDS. SJRDDR
COMMON/GDB/GN, GNR,GO. GJR
COMMON/WORNOW/IMODE. KSMAX, 100
COMMON/PARAM/GAMMA(6. 2). PHEE(6, 6). H(2. 6). Q(2,2), R(2. 2)
COMMON/PARAMR/PHEER (8.6), DPHEE(6, 6), OSTAR (6. 2), BSTAR (2, 2)
DIMENSION GAMMAR(6t2).RR(2#2),VINOVR(2,2)
CALL PARALL (GK, BNR, GAMMAR. PHEER, H.ENODIR. SJRDBR. GNR, GJR.RR
1. 1,GSTAR,VINOVR)

DO 10 I-1,N2 ___



10 DPHEE (I, J) PHEE (I, J)-PHEER ( I #%)
IF(IPARAM. EG. 0) RETURN
WRITE(6. 600)

600 FORMAT (/. 2X. 35HESTIMATED PARAMETERS AND STATISTICS,/I)
DO 20 1-1,N
WRITE(6.601) I.GAMMAR(I. 1), I.PHEER(I. I). I,H(l, I), I,DPHEE(I, I)
1,.. STAR(I. 1)

601 FORMAT(2X. 'GAMDR('.11 ')-',El3.6.2X, 'PHIDR(',Il, ')=',El3.6
1,2X, 'HTR(', Ii. )='.El3.6,SX. 'DPHEE(', II.')=',E13.6,2X, 'OSTAR(I
2,.11, ')=-',E 13. 6)

20 CONTINUE
WRITE(6.602) BNR

602 FORMAT(/I.2X. 21HEQUIVALENT BANDWIDTH-, E13. 6)
WRITE(6 603) VINOVR(1, 1)

603 FORMAT(/.2X. I2HVINOVR(1. l)=.E13.6)
RETURN
END

C
SUBROUTINE PARALL(GK, DNGAMMA, PHEE, H.ENODB SJRDB, ON. QJ. R.ICY
1. GAIN. VINOV)
COMMON/ORDER/N. N2
COMMON/OPTION/NOSe AEST
COMMION/SAMPLE/NSPB. TB, TBR
COMMON/WORNOW/IMODE. KSMAX. IOJ
COMMON/FREG/FZ. FP(3)
DIMENSION FPR(3)
DIMENSION GAMD(3).PHID(3),HT(3)
DIMENSION GAMMA(6,2),PHEE(6,6),H(2,6).Q(2,2),R(2,2)
DIMENSION PVPT(6,6).GTGC6,6),VEST(6.6),VPRED(6.6),HVHT(2.2)
I. VINO)V(2. 2). VINV(2. 2), VPHT(6. 2). GAIN(6, 2), GH(6. 6)
REAL IMGHC6,6)
PI-4.*ATAN(l.)
DELPHI-. 785
DELMEG-DELPHI*2. *P I/TB
IF(NOS.EG.1) GO TO 1
SUMF-0. 0
DO 2 Kinl.NSPB

2 SUMF-SUMF4(SIN( (K-. 5)*TB*DELMEG/NSPB) )**2
CONSTF-SGRT(CSUMF)
GN-CONSTF* 10. ** (-ENOD/20.)
GO TO 3

1 CONSTP-SGRT(NSPB/2. )*ABS(SIN(DELPHI))
GN-CONSTP*lO. **(-ENODB/20.)

3 GJ-10. **(-SBJRDB/20. )/SQRT(2.)
R(1. 1)inGN**2
R(1,2)-O. 0
R(2. 1)iO. 0
R(2. 2)-GN**2
FZR-GM*FZ
DO 5 1-1.N

5 FPR(I)-GK*FP(I)
T-TD/NSPB
CALL PREPAR(T, FZR, FPR. GAMD, PHID HT, BN. IOJ)
DO 10 Iinl#N2
DO 10 J-1l,2

10 GAMMA(I.J)-0.0
DO 11 1-1,N
GAMNACI. 1)-GAMDCI)

11 GAMMA(I+N#2)-GAMD(l)
C NEW WE IGH4TED GAMMA MATR IX

DO 12 11,#N2
DO 12 Jin1#2

12 GAMMA(I,J)-GJ4IQAMMA(IJ)
DO 15 Iin1.N2
DO 15 J-1, N2 44

1 5 PHEE(I,J)inO.0 _____



Do-1-6 riI7W- --

PHEE(I. I)=PHID(I)
16 PHEE(I+NI+N)-PHID(I)

DO 20 1-1,2

20 H(IJ)=O.O AANAN
DO 21 I=1.N

C

C CLUAETHE STEADY-STATEKAMNGI
DO 32 I=1,N2
DO 32 J=1,N2

32 VEST(IJ)=0.0
DO 35 KS=14KSMAX
CALL MABCT(PHEE. N2, N2. VEST, N2. PHEE N2. PYPT. 6,6,6.6.6,6.66)
CALL MATMUL(2, GAMMA, N2. 2.GAMMA. N2, GTG. 6.2,6,2,6,6)
CALL MATAS(1, PYPT. N2, N2. OTO.VPREDD 6.6)
CALL MABCT(H. 2.N2. VPRED. N2.H, 2.HVHT, 2. 6. 6. 6.2.6.2.2)
CALL MATAS(I, R. 2.2.HVHT.VINOY, 2.2)
CALL MATMUL(2, VPRED, N2, N2. H. 2.VPHT. 6.6,2,6,6,2)
DET=VINOV(1. 1)*VINOV(2,2)-VINOV(1,2)*VINOV(2, 1)
VINV(1. 1)=VINOV(22)/DET
VINV( 1, 2)=-VINOV( 1, 2)/DET
VXNV(2. 1)=-VINOV(2. 1)/DET
VINV(2,2)=VINOV(1. 1)/DET
CALL MATMUL(1, VPHT, N2. 2.VINy. 2.GAIN, 6.2,2.2.6,2)
CALL MATMUL(1, GAIN, N2 2. HN2 GH. 6.2.2.6.6.6)
DO 38 I11N2
DO 36 J=1,N2
IMGH( I.J)=-GH( I.J)
IF(I.EQ.J) IMGH(I.J)=1.O-GH(IoJ)

36 CONTINUE
CALL MATMUL( 1.IMGH. N2,N2, VPRED, N2. VEST, 6,6,6.6,6.6)

35 CONTINUE
RETURN
END
SUBROUTINE PREPAR(T, FZ. FP, GAMD. PHID. HT, DN, INOPT)

C
C PREPAR: MODIFICATION SUBROUTINE ADDED TO SUBROUTINE INPUT
C TO PERFORM PRE-CALCULATIONS OF FILTER PARAMETERS
C *1/0 PARAMETERS*
C * INPUT *
C T: SAMPLING TIME
C FZ: ZERO FREQUENCY
C FP: POLE PREQUENCIES (3)
C INOPT: 1-DIGIT CODE FOR SELECTION OF REAL/COMPLEX ZERO
C AND UNITY GAIN/VARIANCE FOR FILTER PARAMETER CALCULATIONS
C =1,REAL ZERO.UNIT GAIN
C =2. REAL ZERO, UNIT VARIANCE
C =3,COMPLEX ZEROUNIT GAIN
C -4, COMPLEX ZERO.UNIT VARIANCE
C *OUTPUT *
C PHID:..FILTER TRANSITION WEIGHTS(3)
C GAMD: FILTER INPUT WEIGHTS(3)
C HT: FILTER OUTPUT WEIGHTS(3)
C BN: EQUIVALENCE NOISE BANDWIDTH
C * INTERNAL FILTER PARAMETERS*
C Z: ZERO FREQUENCY. IN RADIANS
C P: POLE FREQUENCIES (3). IN RADIANS
C R: RESIDUES(3)
C RE: RESIDUIES(3)
C GAINK: GAIN CONSTANT 45
C

DIMENSION FP(3).P(3).R(3),RE(3),PHID(3),QAMD(3),HT(3)
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L PI-4.*AIAN(I.)
IF(INOPT.GT.2) GO TO 100

C FREQUENCY CALCULAT IONS

Z-(-2. )*PI*FZ
DO 1 1-1.3

I P(I),(-2. )*PI*FP(I)
C RESIDUE CALCULATIONS

DO 5 1-1,3
D-1.
DO 10 J-1.3
IF(I. EQ.J) GO TO 10
D-D* (P ( I )-P (,J))

10 CONTINUE
R(I)-(P(X)-Z)/D

5 CONTINUE
C TRANSITION WEIGHTS

DO 20 1-1,3
20 PHID(I)-EXP(P(I)*T)

C INPUT WEIGHTS
DO 25 1-1,3

25 GAMD(I)-(1.-PHID(I))*R(I)/(-P(I))
C UNITY GAIN

IF(INOPT.NE.1) GO TO 30
GAINK-P( I )*P(2)*P(3)/Z
GO TO 35

30 CONTINUE
C UNITY VARIANCE

SUM-O. 0
DO 40 I=1.3
DO 40 J-1,3

40 SUM-SU+GAMND(I)*GAMD(J)/(1.0-PHID(I)*PHID(J))
GAINK-1. /SORT (SUM)

35 CONTINUE
C NEW WEIG;HTED INPUT MATRIX

DO 36 1-1,3
36 RAMD(I)-GAINK*(AMD(I)

C OUTPUT WEIGHTS
DO 45 1-1, 3

45 HT(I)-l.
C EQUIVALENT NOISE BANDWIDTH

DO 50 I- 3
D-1.
DO 55 J-1,#3
IF(I. EQ.J) GO TO 55
D-D*( P ( I)**2-P ( J)**2 )

55 CONTINUE
RE(lI)-AINK**2* (P (I )**;2-Z*-2) /(2. *P( I)*D)

50 CONTINUE

GO-GAINK*Z/(P ( 1)*P (2)*P (3))
BN-(RE(1)+RE(2)+RE(3))/(2. *GO**2)
RETURN

100 CONTINUE
C MODIFIED TRANSFER FUNCTION HAVING COMPLEX ZERO.
C FREQUENCY CALCULATION.
C Z**2mP(2)**2-2*P(I)**2,TO HAVE A JW-AXIS ZEROZ SHOULD BE POSITIVE

Z--2. *PI*FZ
P(I)-Z
P(2)-SGRT(3. )*P(1)
P(3)--2. liP I*FP (3)
FP(1)-P(1)/(-2. *PI)
FP(2)P(2)/(-2. *PI)
FP(3)-P(3)/(-2. *PI )

C RESIDUE CALCULATIONS
DO 110 1-1,3
D-1. 46
DO 120 J"1,3



XFT(I. EQ. 13~0120
D-D*(P(I)-P(J))

*120 CONTINUE
R( I)-(P( I)**2+Z**2)/D

110 CONTINUE
C TRANSITION WEIGHTS

DO 125 1-1.3
*125 PHID(I)-EXP(P(X)*T)

C INPUT WEIGHTS
DO 130 I=1.3

130 GAfD(l)-(l.-PHID(l))*R(I)/(1.0-PHXD(I)*PHID(J))
C UNITY GAIN

IF(INOPT. NE. 3) GO TO 135
GAINK=2. *PI*FP(1)*FP(2)*FP(3)/FZ**2
00 TO 140

*135 CONTINUE
C UNITY VARIANCE

SUM. 0
DO 150 1=1,3
DO 150 J=1.3

150 SUM-SUM+GAMD(I)*GA?1D(J)/(1.0-PHXD(I)*PHID(J))
GAINK-1. /SGRT(SUM)

140 CONTINUE
C NEW WEIGHTED INPUT MARTRIX

DO 141 1=1,3
141 GAMD(lI)-GAINK*GAMD( I)

C OUTPUT WEIGHT
DO 155 1=1,3

155 HT(I)=1.
C EGIVALENT NOISE BANDWIDTH

DO 160 1=1.3
D= 1.
DO 170 113
IF(I. EQ. J) GO TO 170
D-D*(P I )**2-P(J)**2)

170 CONTINUE
RE(I)=(-1. )*GAINK**2*(P(I)**2+Z**2)**2/(2. *P(I)*D)

160 CONTINUE
GO=(-1. )*GAINK*Z**2/(P(1)*P(2)*P(3))
rN-(RE( 1)+RE(2)+RE(3) )/(2. *G0**2)
RETURN
END

C
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SUBROUTINE CFERAT(CERATCL)
EXTERNAL ERF
COMMON/ORDER/N. N2
COMMON/SAMPLE/NSPB, TB, TBR
COMMON/WORNOW/IMODE, KSMAX. IODJ
COMMON/PARAM/GAMMA(6, 2). PHEE(6, 6), H(2, 6), 0(2.2). R(2, 2)
COMMON/PARAMR/PHEER(6, 6), DPHEE(6, 6), GSTAR(6, 2), BSTAR(2, 2)
DIMENSION XEST(6),XEST2(6).XPREDI(6),XPRED2(6)
DIMENSION SIGI(2).SIG2(2),ESl(2),ES2(2)
DIMENSION BI(2.300),YTTJ(2,2),VTILDA(300)
DIMENSION VXX(66),TEMP(66).QTG(6,6),F(6.6),VXXT(6,6),VXXT1(6.6)

1, VXXT2(6. 6). VXTXT(6, 6). VXTXT(6. 6), YXTXT2(6, 6), YXTXT3(6. 6)
2, YXTXT4(6. 6), VXTXTS(6, 6), GRG(6, 6). TEMPI (6.6)
REAL IMGH(6,6)

C
CALL MATMUL(2, GAMMA, N2. 2.GAMMA, N2, GTG. 6.2.6.2.6.6)
CALL MATMUL(I, GSTAR, N2. 2. H.N2, TEMP. 6,2,2,6,6,6)
DO 5 Iinl,N2
DO 5 J=1.N2
IMGH(I, J)--rEMP(I. J)

5 CONTINUE
CALL MATMUL(i, PHEER. N2, N2. IMGH, N2. F.6.6.6.6.6,6)

C
C INITIALIZE VXXVXXT AND YXTXT

DO 6 l11.N2
DO 6 J=l.N2
VXX(I. J)=O. 0
VXXT(I, J)=O. 0

6 VXTXT(I,J)0.O
C

DO 1 KS=1,KSMAX
C VXX(K) - PHEE * VXX(IK-1) * PHEE' + GAMMA 0 GAMMA'

CALL MADCT(PHEE. N2, N2.VXX. N2.PHEE, N2,TEMP. 6.6,6.6.6,6.6.6)
CALL MATAS(1, TEMP. N2. N2.GTG. YXX. 6.6)

C VXXT(K!K-1) - PHEE * VXXT(K-1!K-2) * F' + PHEE * VXX(K) * DPHEE'
C + GAMMA * *AMMA'

CALL MADCT(PHEE. N2. N2.VXXT. N2. F.N2,VXXTI. 6.6.6,6,L. 6.6.6)
CALL MABCT(PHEE. N2, N2, VXX. N2. DPHEEN2. VXXT2. o6,6,6,6.6.6.6)
CALL MATAS(1. VXXT1.N2 N2, VXXT2. TEMP. 6.6)
CALL MATAS(1, TEMP. N2. N2, GTG. VXXT, 6,6)

C VXTXT(K+1!K) = F * VXTXT(K!K-1) * F' + 2. * DPHEE * VXXT(K!K-1) *F'

C + DPHEE * VXXCK) * DPHEE' + GAMMA * Q * GAMMA'
C + PHEER * OSTAR * R * GSTAR' * PHEER'

CALL MADCT(F, N2. N2, VXTXT, N2. F.N2. VXTXT1. 6.6. 6. 6.6. 6.6.6)
CALL MADCT(DPHEE. N2.N2. VXXT. N2. F.N2.VXTXT2, 6,6.6.6,6.6,6.6)
DO 15 I-loN2
DO 15 Jinl,N2

15 VXTXT3(I.J)=VXTXT2(J.I)
CALL MADCT(DPHEE. N2,N2. VXX. N2. DPHEE. N2. VXTXT4. 6.6.6.6.6.6.6.6)
CALL MASCT(GSTAR. N2, 2. R.2.GSTAR. N2.GRG. 6.2.2.2,6.2.6,6)
CALL MABCT(PHEER. N2.N2. GRO, N2.PHEER. N2, VXTXT5, 6.6.6.6.6.6.6,6)
CALL MATAS(i. VXTXTI. N2. N2. XTXT2. TEMP. 6.6)
CALL MATAS( 1, TEMP. N2. N2.VXTXT3. TEMPls1,66)
CALL MATAS( 1.TEMPI1.N2. N2, VXTXT4. TEMP. 6.6)
CALL MATASCI, TEMP. N2, N2. OTO.TEMPI. 6.6)
CALL MATAS(i. TEMPI, N2,N2. YXTXT5, VXTXT. 6.6)

1 CONTINUE
C

DO 25 I1.N2
XESTI(I)-0. 0
XEST2(lI)=O. 0

25 CONTINUE 48
C S191 ES(Mi,N-0)



A=0. 0
DO 20 K-1,NSP3
CALL REFGEN(K,0, FTRO, CiRO, F'IRO, ORRO)
CALL REFGEN(K,1.FTR1,GTRl,FRRIoQRRl)
6101(1 )-FTRO--FRRO
SIGi (2)-GTRO-ORR0
6102(1 )-FTRO-FRR1
9102(2 )=GTRO-ORRl
CALL WKFLT(K, XESTI. XPREDI. 611, ESI)
CALL WKFLT(K, XEST2, XPRED2, 9102.ES2)
A-A+(ES2( 1)**2+ES2(2)**2-ES1 (1 )**2-EB1 (2)**2)
B1(1, K)=ES1 (1)-ES2( 1)
B1(2,K)=ES1(2)-ES2(2)

20 CONTINUE
C THE VII, INNOVATION VARIANCE, IS DECOUPLED,SO IS VTTJ SINCE
C THE TEST SYSTEM IS DECOUPLED.
C IF THE SYSTEM IS COUPLED, THEN THE EVALUATION OF MEAN AND VARIANCE

*C MUST BE MODIFIED.
DO 30 J=1,NSPB
L=J-1
CALL VTT(L, F, VXTXT. VXXT, VTTJ)
VTILDA(J)=VTTJ(1, 1)

30 CONTINUE
B=0. 0
DO 35 J-1,NSPB
DO 35 K=1.NSPB
L=IABS(J-K)+l
B=B+(B (1, J)*B (1, K)+B1 (2. J)*B1 (2, K) )*VTILDA(L)

35 CONTINUE
IF(B.LE.0. ) GO TO 50
SIGMAB=SGRT (B)
X=A/SIGMAB
SUFX=X/(2. *SGRT(2. ))
ERATCL=0. 5*(1. -ERF(SUFX))
WRITE(6,600) A,SIGMAB,VTILDA(1),X

800 FORMAT(2X, 'MU=',E13. 6,2X, 'SIGMA-'. E13. 6.2X, 'VTT(0)=',E13. 6.
12X, 'MU/SIGM4-', E13.6)
RETURN

50 WRITE(6, 601)
601 FORMAT(2X,20HVARIANCE IS NEGATIVE)

DO 60 I-1.NSPB
60 WRITE(6.602) IVTILDA(I),BI(1.I)#B1(2.I)
602 FORiIAT(2X,7HVTILDA(. 13, 2H)=, E13. 6.2X. 1HTRACKING ERROR-. 2E15.6)

RET1URN
END
SUBROUTINE WKFLT(KS, XEST. XPRED, BIG, V)
COMMON/ORDER/N. N2
COMMON/PARAM/GAMMA(6. 2), PHEE(6. 6), H(2, 6). 0(2.2). R(2, 2)
COMMON/PARAMR/PHEER(6, 6), DPHEE(6, 6), QSTAR(6. 2), BSTAR(2, 2)
DIMENSION XEST(6),XPRED(6),SIG(2).V(2),ZHAT(2),GV(6)
CALL MATVEC(PHEER, N2, N2, XEST. XPRED. 6,6)
CALL MATVEC(H, 2.N2. XPRED, ZHAT, 2,6)
CALL YECAS(2, BIG, ZHATo,.2)
CALL MATVEC(GSTAR, N2o, . V Y.6.2)
CALL VECAS (1, XPRED. GV, XEST, 6)
RETURN
END
SUBROUTINE REFGEN(KS, M, FTR, GTR, FRR, GRR)
CO'MON/SAMPLE/NSPB, TB, TBR
COMMON/OPT IDN/NOS, AEST
TK-(KS-O. 5)/N8PB
TKRMOD-(TK-IFIX (TK) )*TBR
DELPHI-. 795
DELMEG-DELPHI*8. *ATAN(1. )/TB

IF(NO S. NE. 1) GO TO 497 -



IF(M. EU. 0) PH-EINinDLLPHI
IF(M. EQ. 1) PHEETR--DELPHI
GO TO 2

1 IF (M. EQ.0) PHEETR-DELMEG*TKRMOD
IF (M.EQ. 1) PHEETR--DELMEG*TKRMOD

2 FTR-COS(PHEETR)
GTR-SINCPHEETR)
FRR-AEST*COS (PHEETR)
GRR-AEST*SIN (PHEETR)
RETURN
END
FUNCTION ERF(X)

C THIS IS AN APPROXIMATION OF ERROR FUNCTION HAVING
C LESS THAN 1. 5E-7 ERROR AND ASSUMED X IS POSITIVE
C ERROF FUNCTION IS SYMMETRIC

P-0. 3275911
A 1-0. 254829592
A2i-0. 284496736
A3-1. 421413741
A4--1. 453152027
A5-1. 081405429
XX-ADS(X)
T-l. 1(l. 4P*XX)
ERFl. - ( A*T+A2*T**24A3*T**3+A4*T**4+A5*T**5)*EXP (-XX**2)
IF(X. GE. 0.) ERF-ERF
IF(X.LT.O. ) ERF--ERF
RETURN
END

50

-IL
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SBROUTINE VTT(JP, F.VXTXT, VXXT. VTTJ)
COMMON/ORDER/N. N2
COMMON/WORNOWIIMODE. lSMAX. IOJ
COMMON/PARAM/GAMMA(6, 2). PHEE(6, 6). H(2. 6). 0(2,2). R(2. 2)
COMMON/PARAMR/PHEER(6, 6), DPHEE(6. 6). OSTARC6. 2). DSTAR(2. 2)
DIMENSION F(6,6).VXTXT(6,6),VXXT(6.6).VTTJ(2.2)
DIMENSION VHT(6.2).HVHT(2.2).91(6.2).92(6,2),B3(6.2)
1. B4(6. 2). 85(2,2), TEMP(6 6) FL(6. 6)
DIMENSION PHEEJ(6,6)V(6.6),V166).V2(66),V3(6.6).V4(2.2)
IF(JP) 1,2,3

1 WRITE(6. II)
11 FORMAT(2X,28HNEQATIVE ~J POWER IN VTT SUB.)

RETURN
2 CALL MADCT(H. 2.N2. VXTXT, N2. 1,2 HYNT. 2.6, 6. 6. 26.2, 2)

CALL MATAS(l.HVHT,2.2#RDBSTAR.2#2)
DO 4 1=1,2
DO 4 J1.2

4 VTTJ(I.J)-BSTAR(IJ)
RETURN

a CONTINUE
C E V * H' - GSTAR *(H * V * H' +- R ) 3

CALL MATMUL(2. VXTXT. N2. N2, H. 2.VHT,6 6,2.6.6,2)
CALL MATMUL(1. OSTAR. N2,2. DSTAR, 2,91,6,2,2,2.6,2)
CALL MATASC2, VHT. N2. 2.91,92.6,2)

C PHEER * I V * H' - GSTAR * ( H *1 V * H' + R ) 3
CALL MATMUL( I. PHEER. N2. N2, 82. 2,93.6, 6.6, 2. 6,2)

C F E PHEER *( I -QSTAR *H ) 3**(J-1)
CALL CAYLEYCIMODE. F. JP-1. FL)

C H * 1(J-1) *1 PHEER *1 I V *1 H' - D 3
CALL MATMUL(i, FL. N2 N2.93,2.94,6,6.6.2.6.2)
CALL MATMUL(1. H. 2.N2. 94.2. 95.2. 6.6. 2.2.2)
IF(IMODE.EQ.1) GO TO 100

c
C SUME F*41(I-1) *1 DPHEE *1 PHEE**(J-I) 3

DO 5 111N2
DO 5 12=1,N2

5 TEMP(I1,12)=0.0

DO 10 I=1.JP

L2=JP- I
CALL CAYLEYC IMODE. F. LiFL)
CALL CAYLEY(IMODE.PHEEL2.PHEEJ)
CALL MATMUL(1, FL. N2, N2, DPHEE. N2. Vi.6,6.6.6.6.6)
CALL MATMUL( 1.VI. N2. N2.PHEEJ.N2. V2.6,6.6.6.6,6)
CALL MATAS(l1.TEMP. N2, N2.V2. V.6.6)
DO 15 11=1,N2
DO 15 JJ1.,N2
TEMP(II. JJ)=V(II, JJ)

15 CONTINUE
10 CONTINUE

C SUMC F*41(I-1) *1 DPHEE *1 PHEE41*(J-1) 3 41 VXXT
CALL MATMUL' 1.V. N2.N2, VXXT, N2.V3. 6.6.6.6.6.6)

C H *1 SUM[ F41*(I-1) *1 DPHEE *1 PHEE41*(J-I) 3 *1 VXXT *1 H'
CALL MABCT(H. 2,N2.V3 N2 H. 2.V4. 2.6.6.6.2.6.2.2)
CALL MATAS( 1. 5. 2.2.V4. VTTJ. 2,2)
RETURN

100 DO 110 1-1,2
DO 110 J-1l,2
VTTJ( It J)-B5(l I.J.)

110 CONTINUE
RETURN
END
SUBROUTINE CAYLEYC IMODE. F. L.FL) S

C THIS SUBROUTINE PRODUCE THE MATRIX HIGH POWERED USING



C CAYLEY-HAMILTON'S THEOREM TO REDUCE [HE ERUOR.
C IMODE
C (1) AND (2) : F IS DIAGONAL MATRIX SOTHAT IT HAS SAME EIGEN-VALUE.
C THIS REQUIRE SPECIAL GAUS SUBROUTINE TO SOLVE THE LINEAR EQUATIONS.
C (3) : F IS GENERAL MATRIX AND HAS THE DISTINGUISHED
C EIGEN-VLAUE
C F INPUT MATRIX TO BE MULTIPLIED BY HIGH POWER
C FL RESULTANT MATRIX

COMMON/ORDER/N, N2
COMPLEX EV(6),AI(6,6),BI(6),ALFA(6),FLI(6,6),CMPLX
DIMENSION F(6,6),A(12, 12),B(12)oX(12),FL(6,6),FP(6,6,6)
DIMENSION SF(6,6)
IF(L) 1#2,3

1 WRITE(6,4)
4 FORMAT(' NEGATIVE L IN SUB. CAYLEY')

RETURN
2 DO 5 I-IN2

DO 5 J-1,.N2
FL(IJ)O. 0
IF(I.EQ.J) FL(IJ)=I.

5 CONTINUE
RETURN

3 CONTINUE
IF(L.NE.1) GO TO 7
DO 6 I11,N2
DO 6 J-1,N2
FL(I, J),-F(I, J)

6 CONTINUE
RETURN

7 CONTINUE
IF(IMODE. NE. 3) GO TO 150
N4-N*4
CALL EIGEN(F, N2, EV)

C USING GAUSS ELIMINATION METHOD, COMPLEX MATRIX CONSISTED WITH
C EIGENVALUES IS PARTITIONED.

DO 20 1-1,N2
DO 10 JilN2

10 A1(I,J)"EV(I)**(J-1)
20 B1(I)EV(I)**L

DO 40 I1,N2
DO 30 J-1IN2
A(IJ)'REAL(A1(I,J))
A( I, J+N2).-AIMAG(A1 ( I, J))
A( I+N2., J)=AIMAG(A1 (I, J))
A(I+N2, J+N2)-REAL(A1(I, J))

30 CONTINUE
B(I)REAL(BI(I))
B( I+N2)mAIMAG(B1 (I))

40 CONTINUE
CALL GAUS(A, B. X, N4, IERROR)

C GENERATE THE COEFFICIENTS OF CHARACTERISTIC FUNCTION
DO 50 I-l,N2
ALFA(I)CMPLX(X(I), X(I N2))

50 CONTINUE
C CAYLEY-HAMILTON'S THEOREM

DO 70 I-1lN2
DO 70 JmlN2
FP(I, Jol)O.0
IF(I. EQ.J) FP(I,J, 1)-i.

70 CONTINUE
DO 75 Iml#N2
DO 75 JinlN2
FP( I, J# 2)-F( I, J)

75 CONTINUE
NM2-N-2 52
IF(NMI) 90,90,955



DO 85 Iinl.N2
DO 635 J-1,N2
FP(IJ.NP)=0.0
DO B5 M=1,N2
FPC I. J.NP)=FP( I.J. NP)+FP( I,M, NP-i )*F(M, 4)

65 CONTINUE
90 CONTINUE
90 CONTINUE

DO 100 I-1,N2
DO 100 J-1,N2
FL1(I. J)-CNPLX(0. 0.0.0)

100 CONTINUE
DO 110 NP=1,N
DO 120 I=1.N2
DO 120 J=l.N2
FLI(I.J)-FLI(IJ)+ALFA(NP)*FP(I,JNP)

120 CONTINUE
110 CONTINUE

DO 130 I=1.N2
DO 130 J=1,N2
FL( I.J)-REAL(FL1 (I.J))

130 CONTINUE
RETURN

150 CONTINUE
DO 152 I=1.N
DO 152 J-1.N

*152 SF(I.J)=F(I,J)
CALL EIGEN(SF,N,EV)
DO 220 I=1.N
DO 210 J=1.N

210 AI(IJ)=EV(I)**(J-1)
220 D1(I)=EV(I)**L

DO 240 I=1.N
DO 230 J=1,N
A( I.J)-REAL(A1 (I, ))
A(I,J+N)=-AIMAG(A1(IJ))
A( I+N, J)=AIMAG(A1 (I, 4))
A( I+N. J+N)=REAL(AI (I. ))

230 CONTINUE
D(I)=REAL(B1(l))
B( I+N)-AIMAG(B1 CI))

240 CONTINUE
CALL GAUS(A, B. X.N2,IERROR)
DO 250 I=1,N
ALFA(I)=CMPLX(X(I). X(I+N))

250 CONTINUE
DO 270 1=1,N
DO 270 J=1,N
FP(I.Jo1)0O.0
IF(I.EQ.J) FP(I.J,1)=1.

270 CONTINUE
DO 275 1-1,N
DO 275 J=1.N
FP( I. 4.2)=SF( I.4)

275 CONTINUE
NM2-N-2
IF(NM2) 290,290.295

295 DO 280 NPm3,N
DO 285 1-1l.N
DO 285 J41*N
FP(I sNP)0. 0
DO 295 M-1,N
FP( I. 4.NP)-FP( IJ4.NP)+FP( I. I1NP- &)*SF(M, 4)

285 CONTINUE 5
280 CONTINUE 5



29 0 CONrTINU
DO 300 inl,.N
DO 300 J-1,N
FLI(I, J)-CMPLX(O. 0,0. 0)

300 CONTINUE
DO 310 NP-1,N
DO 320 I-l,N
DO 320 J-IN
FLl(I, J)FLI( I, J)+ALFA(NP)*FP( I, J. NP)

320 CONTINUE
310 CONTINUE

DO 330 I-1,N
DO 330 JI1,N
FL( I, J)=REAL(FL1 (I, J))
FL( I+N, J+N)-REAL(FL1 (I, J))
FL(I+N, J)'nO. 0
FL( I, %)+N)=0. 0

330 CONTINUE
RETURN
END
SUBROUTINE GAUS(A, B, X,N, IERROR)
DIMENSION A(12, 12),B(12),X(12)

C
C THIS SUBROUTINE IS IN 'NUMERICAL ANAYSIS' BY L.W.JOHNSON AND R.D.
C RIESS ,1977 BY ADDISON-WESLEY PUB. CO.
C SUBROUTINE GAUS USES GAUSS ELIMINATION (WITHOUT PIVOTING) TO SOLVE
C THE SYSTEM AX=B. THE CALLING PROGRAM MUST SUPPLY THE MATRIX A. THE
C VECTOR B AND AN INTEGER N (WHERE A IS (NXN). ARRAYS A AND B ARE
C DESTROYED IN GAUS. THE SOLUTION IS RETURNED IN X AND A FLAG, IERROR,
C IS SET TO 1 IF A IS NON-SINGULAR AND IS SET TO 2 IF A IS SINGULAR.
C TO GET MORE ACCURATE SOLUTION, CALL SUBROUTINE RESCOR AFTER GAUS.
C

NMI=N-1
DO 5 II-, NM1

C
C SEARCH FOR NON-ZERO PIVOT ELEMENT AND INTERCHANGE ROWS IF NECESSARY.
C IF NO NON-ZERO PIVOT ELEMENT IS FOUND, SET IERROR-2 AND RETURN
C

DO 3 J-I,.N
IF(A(JI).EG.O.) GO TO 3
DO 2 K-I.N
TEMP-A( I, K)

A( I, K)mA(J, K)
2 A(JK)-TEMP

TEMP-B ( I)
B( I ) B(J)
B (J) -TEMP
GO TO 4

3 CONTINUE
GO TO 8

C
C ELIMINATE THE COEFFICIENTS OF X(I) IN ROWS I+1 ... N
C

4 IP1=I+1
DO 5 KIPI,N
Q"-A(K,I)/A(I, I)

A(K, I)iO. 0
B(K)'Q*B (I)+B (K)
DO 5 J-IP1,N

5 A(KJ)"G*A(IJ)+A(KJ)
IF(A(NN).EQ.0. ) GO TO 8

C
C ACKSOLVE THR EQUIVALENT TRIANGULARIZED SYSTEM, SET IERROR"I,
C AND RETURN
C 54

X (N)3B(N)/A(N, N)



NPT-N+ 1
DO 7 K-1. NM1 '
=0.

NMK-N-K
DO 6 J=1.K

6 Q-G+A(NMK.NP-J)*X(NPl-J)
7 X(NMK)-(B(NMK)-Q)/A(NMK,NMK)

IERROR-1
RETURN

8 IERROR=2
RETURN
END
SUBROUTINE EIGEN (A, N, EVALUE)
DIMENSION A(6,6),RR(6),RI(6),IANA(36)oAT(36)
COMPLEX CMPLX, EVALUE(6)
DO 6 I=1.N
DO 7 J=I,N
K=N*( I-1)

7 AT(J+K)=A(IJ)
6 CONTINUE

CALL HSBG(N, AT, N)
CALL ATEIG(N, AT, RR, RI, IANA, N)
DO 5 I=I,N
EVALUE( I )=CMPLX(RR( I), RI (I))

C WRITE(6, 500)
C 500 FORMAT(5X, 'THE EIZENVALUE IS')
C WRITE(6, 600)
C 600 FORMAT(1OX, 'REAL ROOT', 15X, 'IMAG ROOT')
C WRITE(6,700) RR(I),RI(I)
C 700 FORMAT (5X,E15.6,14XE15.6)

5 CONTINUE
RETURN
END

C SUBROUTINE HSBQ HSBG 40
C PURPOSE HSBG 60
C TO REDUCE A REAL MATRIX INTO UPPER ALMOST TRIANGULAR FORM HSBG 70
C USAGE HSBG 90
C CALL HSBG(NA, IA) HSBG 100
C DESCRIPTION OF THE PARAMETERS HSBG 120
C N ORDER OF THE MATRIX HSBG 130
C A THE INPUT MATRIX, N BY N HSBG 140
C IA SIZE OF THE FIRST DIMENSION ASSIGNED TO THE ARRAY HSBG 150
C A IN THE CALLING PROGRAM WHEN THE MATRIX IS IN HSBG 160
C DOUBLE SUBSCRIPTED DATA STORAGE MODE. IA-N WHEN HSBG 170
C THE MATRIX IS IN SSP VECTOR STORAGE MODE. HSBG 180
C HSBG 190
C REMARKS HSBG 200
C THE HESSENBERG FORM REPLACES THE ORIGINAL MATRIX IN THE HSBG 210
C ARRAY A. HSBG 220
C HSBG 230
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED HSBG 240
C NONE HSBG 250
C HSBG 260
C METHOD HSBG 270
C SIMILARITY TRANSFORMATIONS USING ELEMENTARY ELIMINATION HSBG 280
C MATRICES, WITH PARTIAL PIVOTING. HSBG 290
C HSBG 300
C REFERENCES HSBG 310
C J.H. WILKINSON - THE ALGEBRAIC EIGENVALUE PROBLEM - HSBG 320
C CLARENDON PRESS, OXFORD, 1965. HSBG 330
C HSBG 340
C ...... ... ... ... ..................................... ..... ......... HSB G 3 50
C HSBG 360

SUBROUTINE HSBG(NA, IA) HBDG 370
DIMENSION A(36)
L-N 55 HSO 400

*." hl; ..-- .... .; -,"., ' ' li .. f .



NIAIL* IA HSBB 410
LIA-NIA-IA HSB 420 1

C HSBG 430
C L IS THE ROW INDEX OF THE ELIMINATION HSBQ 440
C HSBD 450

20 IF(L-3) 36040#40 HSBG 460
40 LIA-LIA-IA HSBG 470

Li=L-1 HSBG 480
L2=Ll-i HSBG 490

C HSBG 500
C SEARCH FOR THE PIVOTAL ELEMENT IN THE LTH ROW HSBG 510
C HSBG 520

ISUB=LIA+L HSBG 530
IPIV=ISUB-IA HSBO 540
PIV-ABS(A(IPIV)) HSBG 550

IF(L-3) 90,90.50 HSBG 560
50 MIPIV-IA HSBG 570DO 80 ILM, IA HSBG 580 I

T-ABS(A(I)) HSBG 590
IF(T-PIV) 80,80,60 HSBG 600

60 IPIV=I HSBG 610
PIV=T HSBQ 620

80 CONTINUE HSBG 630
90 IF(PIV) 100o320,100 HSBG 640
100 IF(PIV-ABS(A(ISUB))) 180,180,120 HSBG 750

C HSBG 660
C INTERCHANGE THE COLUMNS HSHC 670

C HSBQ 680
120 M=IPIV-L HSBG 790

DO 140 A(1,L HSBG 700
JCM+I HSBG 710
T=A(J) HSBG 720
K=LIA+I HSBG 730
A(J)IA(K) HSBG 740

140 A(K)=T HSBG 750
C HSBQ 760
C INTERCHANGE THE ROWS HSBQ 770
C HSBG 7U0

M=L2-M/IA HSBG 790

DO 160 I=L1,NIA0IA HSBG 800
T-A(I) HSBG 810
J-I-M HSBG 820

A(I)-A(J) HSBG 830
160 A(J)=T HSBQ 840

C HSBG 850
C TERMS OF THE ELEMENTARY TRANSFORMATION HSBG 860
C HSBG 870

180 DO 200 I-L, LIAIA HSBG 90
200 A(1)At1)/A(ISUB) HSBG 890

C HSBG 900
C RIGHT TRANSFORMATION HSBG 910
C HSBG 920

J-IA HSBD 930
DO 240 -=1,L2 HSBG 940
J2J+IA HSBG 950
LC,,L+J HSBG 960
DO 220 K-.L A HSBG 970
KJ-K+J HSBG 980
KL-K+LIA HSBG 990

220) A(KJ)-A(KJ)-A(LJ)*A(KL) HSBGI00
240 CONTINUE HSBloI01

C HSBG1020
C LEFT TRANSFORMATION HSBG1030
C HSBO1040 ,

K--IA 56 HSBG1050

DO 300 1-1,N 56 HSBG1O60

I



LK-K+L1 HSB1080
S-A(LK) HSBG1090
LJ=L-IA HSBG1100
DO 280 J=I,L2 HSBG111O
JK-K+J HSBG1120
LJ=LJ+IA HSBG1130

280 S-S+A(LJ)*A(JK)*1.ODO HSBG1140
300 A(LK)=S HSBG1150

C HSBG1160
C SET THE LOWER PART OF THE MATRIX TO ZERO HSBG1170
C HSBG1160

DO 310 I-LoLIAIA HSBG1190
310 A(I)=O.O HSBG1200
320 L=L1 HSBG1210

GO TO 20 HSBG1220
360 RETURN HSBG1230

END HSBG1240

C ATEI 10
C ....................................................... ...........A TE I 2 0
C ATEI 30
C SUBROUTINE ATEIG ATEI 40
C ATEI 50
C PURPOSE ATEI 60
C COMPUTE THE EIGENVALUES OF A REAL ALMOST TRIANGULAR MATRIX ATEI 70
C ATEI 80
C USAGE ATEI 90
C CALL ATEIG(MARRRI, IANA, IA) ATEI 100
C ATEI 110
C DESCRIPTION OF THE PARAMETERS ATEI 120
C M ORDER OF THE MATRIX ATEI 130
C A THE INPUT MATRIX M BY M ATEI 140
C RR VECTOR CONTAINING THE REAL PARTS OF THE EIGENVALUES ATEI 150
C ON RETURN ATEI 160
C RI VECTOR CONTAINING THE IMAGINARY PARTS OF THE EIGEN- ATEI 170
C VALUES ON RETURN ATEI 180
C IANA VECTOR WHOSE DIMENSION MUST BE GREATER THAN OR EQUAL ATEI 190
C TO M, CONTAINING ON RETURN INDICATIONS ABOUT THE WAY ATEI 200
C THE EIGENVALUES APPEARED (SEE MATH. DESCRIPTION) ATEI 210
C IA SIZE OF THE FIRST DIMENSION ASSIGNED TO THE ARRAY A ATE' 220
C IN THE CALLING PROGRAM WHEN THE MATRIX IS IN DOUBLE ATEI 230
C SUBSCRIPTED DATA STORAGE MODE. ATEI 240
C IA=M WHEN THE MATRIX IS IN SSP VECTOR STORAGE MODE. ATEI 250
C ATEI 260
C REMARKS ATEI 270
C THE ORIGINAL MATRIX IS DESTROYED ATEI 280
C THE DIMENSION OF RR AND RI MUST BE GREATER OR EQUAL TO M ATEI 290
C ATEI 300
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED ATEI 310
C NONE ATEI 320
C ATEI 330
C METHOD ATEI 340
C OR DOUBLE ITERATION ATEI 350
C ATEI 360
C REFERENCES ATEI 370
C J.G.F. FRANCIS - THE QR TRANSFORMATION---THE COMPUTER ATEI 380
C JOURNAL, VOL. 4, NO. 3, OCTOBER 1961, VOL. 4, NO. 4, JANUARYATEI 390
C 1962. J. H. WILKINSON - THE ALGEBRA:C EIGENVALUE PROBLEM - ATEI 400
C CLARENDON PRESS, OXFORD, 1965. ATEI 410
C ATEI 420
C .. .. .. ... .. .... ... .. ... .... ... .. .. .. .. .... ... ... .. .... .. ... .. .. .. .A TE I 430
C ATEI 440

SUBROUTINE ATEIG(M, A. RR, RI, IANA, IA) ATEI 450
DIMENSION A(36),RR(6),RI(6),PRR(2),PRI(2),IANA(36)
INTEGER PP1,Q ATEI 470

C57 ATEI 480



E7-i. OL-H ATEI 490
E6-i. OE-6 ATE! 500
ElOmi. OE-10 ATE! 510
DELTAwO. S ATE! 520

C MAXI!T-30 ATE! 530
cATE! 540

C INITIALIZATION ATE! 550
c - ATE! 560

2 IN- ATE! 570

20N-N-*i ATE! 580

NINNA ATE! 590
NN-N+NATE! 600

!F(NI) 30,1300,30 ATEI 610

C30 NP-N+i ATE! 620
c ATE! 630*

C ITERATION COUNTER ATE! 640
c I- ATE! 650

! C ATE! 660'
cATEX 670

C ROOTS OF THE 2ND ORDER MAIN SUDMATRIX AT THE PREVIOUS ATE! 690
C ITERATION ATE! 690

C DO 40 1-1,2 ATE! 70

PRR(I)-0. 0 ATE! 720

40 PR!(I)-0.0 ATE! 720

CATE! 740
C LAST TWO SUBDIAGONAL ELEMENTS AT THE PREVIOUS ITERATION ATEI 750
c ATE! 760

PAN-O. 0 ATE! 770

C PANi=0. 0 ATE! 780
cATE! 790

C ORIGIN SHIFT ATE! BOO
C ATE! 810

R-0. 0 ATE! 820
S-0. 0 ATE! 830

C ATE! 840
C ROOTS OF THE LOWER MAIN 2 BY 2 SUBMATRIX ATE! 850
C ATE! 860

N2-Ni-1 ATE! 870
INi -IN-IA ATE! 880
NN 1-IN 1 N ATE! 890
Ni N-! N+N I ATE! 900
NlN1-INI+N1 ATE! 910

60 T-A(NlNl)-A(NN) ATE! 920
U-T*T ATE! 930
V-4. 0*ACNlN)*A(NNI) ATE! 940
IF(ADS(V)-U*E7) 100,100,65 ATE! 950

65 T-U+V ATE! 960
IF(ADS(T)-AMAX1(U,ADSCV))*E6) 67.67,68 ATE! 970

67 T-0. 0 ATE! 980
68 Uin(A(NlN1 )+A(NN) )/2.0 ATE! 990

V-SGRT(ABS(T) )/2. 0 ATE! 1000
!F(T)140. 70.70 ATE! 1010

70 IF(U) 80,75.75 ATEI1020
75 RR(N1)-U4V ATE!11030

RR(N)-U-V ATE!11040
GO TO 130 ATE!11050

90 RR(N1)inU-V ATE!11060
RR (N) -UV ATE11070
GO TO 130 ATE11080

100 IF(T)120. 110,110 ATE11090
110 RR(Nl)inA(NlNI) ATE! 1100

RR(N)-A(NN) ATE!11110
GO TO 130 ATE!11120

120 RR(N1)-A(NN) ATEI1130
RR(N)a-A(N1Nl) 58 ATE11140



-T 0RTT-0. VU A TEI1
RI(N1)nO. 0 ATE11160
GO TO 160 ATE 11170

140 RR(Nl)-U ATE! 1180
RR (N) =U ATE1 1190
RI (Ni )V ATE11200
RI (N)=-V ATE11210

160 IF(N2)1280. 1280.160 ATE!11220
C ATE1 1230
C TESTS OF CONVERGENCE ATE11240
C ATE11250

180 NlN2-N1NI-IA ATE1 1260
RMODmRR(N1 )*RR(Nl)+R!(N1)*RI(N1) ATE1 1270
EPS=El1 *SGRT (RMOD) ATE11280
IF(ABS(A(N1N2) )-EPS) 1260,12930.240 ATE1 1290

240 IF(ADS(ACNNI))-E1O*ABS(A(NN))) 1300,1300,250 ATE11300
250 IF(ABS(PANIl-A(NIN2))-ABS(A(N1N2))*E6) 1240,1240,260 ATEI1310
260 IF(ABS(PAN-A(NNI))-ABS(A(NN1))*E6)1240,1240,300 ATE11320
300 !F(IT-MAX!T) 320.,1240, 1240 ATE11330

C ATE11340
C COMPUTE THE SHIFT ATE11350
C ATE11360

320 J-1 ATE11370
DO 360 I=1,2 ATE11380
K=NP-I ATE11390
IF(ABS(RR(K)-PRR(I))+ABS(RZ(K)-PRI(I))-DELTA*(ABS(RR(K)) ATE11400
1 +ADS(RI(K)))) 340,360,360 ATE11410

340 JJ+l ATE11420
360 CONTINUE ATE11430

0O TO (440,460,460,480),J ATE1 1440
440 R=0. 0 ATE11450

S=0. 0 ATE11460
GO TO 500 ATE1 1470

460 J-N+2-J ATE!11490
R=RR(J)*RR(J) ATE!11490
S=RR(J)+RR(J) ATE!11500
GO TO 500 ATE11510

490 R=RR(N)*RR(N1)-RI(N)*RI(N1) ATE11520
S-RR(N)+RR(NI) ATE 11530

C ATEr154O
C SAVE THE LAST TWO SUBDIAGONAL. TERMS AND THE ROOTS OF THE ATE11550
C SUBMATRIX BEFORE ITERATION ATE11560
C ATE11570

500 PAN-A(NN1) ATE 11580
PANI=ACNIN2) ATE!11590
DO 520 I=1,2 ATE!11600
KNP-I ATE!11610
PRR(lI)-RR(K) ATEI 1620

520 PRI(I)inRI(I1) ATE!11630
C ATE11640

* C SEARCH FOR A PARTITION OF THE MATRIX* DEFINED BY P AND Q ATE11650
C ATE!11660

P-N2 ATE!I1670
* C IP!-N1N2 ATEI11680

IF (N-3) 600,600,525
525 IPI-NIN2

DO 580 Jin2,N2 ATE!11690
!PI-IPI-IA-1 ATE!11700
IF(ABB(A(IPI))-EP8) 600.600#530 ATE11710

530 IPIPm!PI+XA ATE!11720
!PXP2-IPIP+IA ATE!11730
D-AC !PIP)*CA( IPIP)-S)+A( IPIP2)*A( IPIP+1 )+R ATE!11740
IF(D)540. 560. 540 ATE!11750

540 IF(ADS(A(IPI)*A(!PIP+1))*(A39(A(IP!P)+A(!P1P2+1)-S)+ADS(A(!P!P2+2)ATE11760
1 )) -ABS(D)*EPS) 620.620,560 59 ATE1 1770j560 P-NI-J ATE11790



580 CONTINUE ATE11790
600 G-P ATEI1800

GO TO 680 ATEI1810
620 Pi=P-I ATEII820

0-P 1
IF (P1-1) 680.680,650

650 DO 660 I-2,PI
IPI-IPI-IA-I ATEI1850
IF(ABS(A(IPI))-EPS)680,680,660 ATE11860

660 0=0-1 ATEI1870
c ATE!1880
C OR DOUBLE ITERATION ATE!1890
C ATE!1900
680 II=(P-1)*IA+P ATE11910

DO 1220 I=PN1 ATE!1920
III=11-IA ATEI1930
IIP=II+IA ATEI1940
IF(I-P)720,700,720 ATEI1950

700 IPI=II+I ATEI1960
IPIP=IIP+I ATEI1970

C ATE!1980
C INITIALIZATION OF THE TRANSFORMATION ATEI1990
C ATEI2000

1-A(II)*(A(II)-S)+A(IIP)*A(IPI)+R ATE12010
G2=A(IPI)*(A(IPIP)+A(II)-6) ATEI2020
93-A(IPI)*A(IPIP+I) ATE12030
A(IPI+1)-O.O ATE12040
GO TO 780 ATE12050

720 GI=A(II1) ATE12060
G2-A(II1+I) ATE12070
IF(I-N2)740,740,760 ATEI2080

740 G3-A(II+2) ATEI2090
GO TO 780 ATE12100

760 G3-0.0 ATE12110
780 CAP-SQRT(01*9l+92*02+03*93) ATE!2120

IF(CAP)800,860,800 ATE12130
800 IF(G1)820,840,840 ATE12140
820 CAP--CAP ATEI2150
840 T-G1+CAP ATE12160

PSII-G2/T ATE12170
PS12-G3/T ATE12180
ALPHA=2.0/(.O+PSII*PSII+PSI2*PSI2) ATEI2190
GO TO 880 ATEI2200

860 ALPHA-2.0 ATE12210
PS11-0.0 ATE12220
PSI2-0.0 ATE12230

890 IF(I-G)900 960, 900 ATE12240
900 IF(I-P)920,940o920 ATE12250
920 A(!I1)-CAP ATE12260

GO TO 960 ATE12270
940 A(II1)m-A(III) ATE12280

C ROW OPERATION ATE12300
C ATEI2310
960 I1-nII ATE12320

DO 1040 J=IN ATE12030
T-PSII*A(IJ+1) ATE12340
IF(I-N1)980,1000,1000 ATEI2350

980 IP2J-IJ+2 ATE12360
T-T+PS12*A(IP2J) ATE12370

1000 ETA-ALPHA*(T+A(IJ)) ATE12380
A(IJ)-A(IJ)-ETA ATE12390
A(IJ+1)-A(IJ+I)-PSI1*ETA ATEI2400
IF(I-N1)IO20 ,1040,1040 ATEI2410

1020 A(ZP2J)-A(IP2J)-PS12*ETA ATE12420
1040 IJIJ+IA 60 ATE12430

C ATE12440

ll II il i II - " - - "_ _
-
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C-- - CmxR~wuMRTTD -- ATE'12450
C ATE12460

IF(I-Nl)1080. 1060. 1060 ATE12470
1060 K-N ATE12480

GO TO 1100 ATE12490
1080 K-1+2 ATE 12500
1100 IPmIIP-I ATE12510

DO 1180 J-Q.K ATE 12520
JIP=IP+J ATE 12530
~JI=JIP-IA ATE12540
T=PSI1*A(JXP) ATE12550
IF(I-N1)1120. 1140. 1140 ATE12560

1120 JXP2-JIP+IA ATE 12570
T-T+PS12*A(JIP2) ATE12580

1140 ETA=ALPHA*(T+A(JI)) ATE12590
A(JI )=A(.JI )-ETA ATE12600
A(.JIP)iA(JIP)-ETA*PSI1 ATE12610
IF(I-NI)1160. 1180. 1180 ATE 12620

1160 A(d1P2)inA(JIP2)-ETA*PSI2 ATE12630
1180 CONTINUE ATE12640

IF(1-N2) 1200. 1220k 1220 ATE 12650
1200 J)I=1I+3 ATE12660

JIP=JI+IA ATE12670
JIP2=-JIP+IA ATE12680
ETA-ALPHA*PS12*A (JIP2) ATE 12690
A(JI )--ETA ATE 12700
A(JIP )--ETA*PSI 1 ATE 12710
A(JIP2)-A(JIP2)-ETA*PS12 ATE12720

1220 II=IIP+1 ATE12730
IT=IT+l ATE12740
G0 TO 60 ATE12750

C END OF ITERATION ATE12770
1240 IF(ABS(A(NN ) )-ABS(A(N1N2))) 1300&1280#1280 ATE12790

C ATE 12800
C TWO EIGENVALUES HAVE BEEN FOUND ATE 12810
C ATEr2820
1280 IANA(N)0 ATE 12830

IANA(N )-2 ATE 12840
N=N2 ATE 12850
IF(N2)1400. 1400, 20 ATEI2e6O

c ATE12870
C ONE EIGENVALUE HAS BEEN FOUND ATE12eeo
C ATE12890
1300 RR(N)-A(NN) ATE12900

RI(N)0. 0 ATE12910
I ANA (N) =1 ATE 12920
IF(N1)1400. 1440. 1320 ATE12930

1320 N=NI ATE12940
GO TO 20 ATE 12950

1400 RETURN ATE12960
END ATEI2970
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SUBROUTINE MATMUL(IMOT. A. N.M, B, L.C. NA, t-E C
DIMENSION ALNAMA),B(NBMB),C(NC,MC)2

C A , B , C ARE GENERAL MATRIX
C IF A XB=C, THEN IMOT IS 1
C IF A X B'=C, THEN IMOT IS 2

* DO 1 11I,N
DO 1 J-1,L

* C(I,J)=0.0
DO 1 K=1.M
GO TO (2,3),IMOT

2 B1=B(K.J)
GO TO 1

3 B1-B(JK)
I C(I,J)=C(I.J)+A(I,K)*Bl

RETURN
END
SUBROUTINE MATASCIADS A. N,N, B, C.NA. MA)
DIMENSION A(NAMA),13(NA,MA),C(NA,MA)

C IF A +B =C, THEN IAOS IS I
* C IF A- B =C. THEN IAOS IS92

IF(IAOS. NE. 1) GO TO 10
DO 1 I-1,N
DO 1 J=1,M

I C(I. J)=A(I. J)+B(I. J)
RETURN

10 DO 2 I-1,N
DO 2 J'1.M

2 C(I.J)=A(IJ)-BCI.J)
* RETURN

END
* ~SUBROUTINE MArVEC(A. NM. B.C.NA, MA)

DIMENSION A(NA.MA).B(MA).C(NA)
DO 1 I1IN
C(I)=O.0
DO 1 J-1.M

I C(l)inC(I)+A(IJ)*B(J)
RETURN
END
SUBROUTINE VECAS( lAOS. A. B.C.N)
DIMENSION A(N),B(N),C(N)

C A., B C ARE VECTORS
C IF A +B =C. THEN IAOS IS I
C IF A -B =C THEN IAOS IS62

IF(IAOS.NE.1)GO TO 10
DO 1 I=1.N

1 C(I)-A(I)+B(I)
RETURN

10 DO 2 I-1,N
2 C(I)inA(l)-B(I)

RETURN
END
SUBROUTINE MABCT(A,N,M,L,C,LL.D.NA.MAN1.MBNCMC.ND,MD)
DIMENSION A(NAMA),B(NU.MB),C(NC.MC),D(NDMD),AB(6.6)
DO 10 I-1,N
DO 10 J-1l,L
AB( I. J)=0. 0
DO 10 KinI,M

10 CONTINUE
DO 20 1-1l.N
DO 20 J-1-LL
D(Is J)nO. 0
DO 20 K-1.L
D( I.J)-D( I, J)+AB( I, K)*C(J. K)

20 CONTINUE
RETURN
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APPENDIX B

THE MONTE-CARLO SIMULATION PROGRAM
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C THIS PROGRAMMING IS CALLED PHASET. ITS MAIN PURPOSE IS TO
C ESTIMATE THE UNKNOWN PHASE USING THE PHASE LOCKED LOOP HAYVING
C A VERY NARROW BANDWIDTH.
C PROGRAMMER
C CHANGJUNE VOON
C TEXAS A & M UNIVERSITY
C START JUNE. 1978
C

COMMON/SAMPLE/NSPD. TB
COMMON/PHASE/PHEES, PHEEG
COMMON/ODD /ENODD. SJRDB
DIMENSION HMO(2.2)HMI(2,2),VESTO(4,4),VESTI(4,4),XESTO(4)

1, XESTI(4). VARINO(2, 2), VARIN1(2, 2). VO(2). V1(2)
DIMENSION GAINO(4. 2), QAINi (4,2)
REAL MEAN
LOGICAL*1 STRNG(8)
INTEGER*4 JTIME
CALL ASSIQN(5, 'SY:PHASET.DAT', 13, 'RDO'. 'NC'.1)
CALL INPUT
READ(5. 1) NOCASENPRNT

1 FORMAT(215)
DO 2000 NCASE-1. NOCASE
READ(5,2) NOSYMENODB

2 FRA(5E56
* KSMAX-NOSYM*NSPB

CALL INIT(XJI. XJG. XESTO. XESTI, VESTO, VESTI, XPl, XPQ,VCO
I, ERROR, ERRORS, MEAN, VARANS)
CALL GTIM(JTIME)
CALL TIMASC(JTIME. STRNG)
WRITE(6.7272) (STRNG(II),II-i.8)

7272 FORMAT(lX. 'START TIME 1S ',BA1)
WRITE(8. 50)

50 FORMAT(6X, 2HIB, SX. HERROR, 14X. 6HERRATE, lix.6HERRORS. i2X
1. 6HERRATS, 12X. 16HPHEEO IN DEGREES, SX. I7HMEAN AND VARIANCE)
DO 1000 KS-i. KSMAX
CALL SIQNAL(KSB99,SI. SO)
CALL RFI(KS, XJI, XJQ.YI.YGh)
CALL DATA(SI. SQ. VI. VOZI, ZQ)
CALL VCOU)T(KS, ZI ZO.XPl, XPQ, VCO.MEAN. VARANS)
CALL REFGEN(KS. 0.FTRO, OTRO. HMO)
CALL REFOEN(KS. i.FTRiGTRi,HMl)
CALL KALMAN(KS. ZI. ZQ.HMO, VESTO, XESTO. GAINO, VAR INO. DETO, VO)
CALL KALMANCKS ZI. ZG.HMI.VEST1,XESTi,OAINI.VARINIDETi.Vi)
CALL COST(KS, VO.VAR INO. DETO, SUMO)
CALL COST(KS, Vi.VARINI, DETi, SUMi)
CALL STAND(KS, ZI, ZO.SUMS, FTRO. OTRO, FTRI, OTRi
1, AFSKO. AFSK1, DFSKO. BFSK1. SFSKO. SFSKi)
IB-Il+IFIX( (KS-. 5)/NSPD)
IF(MOD(KSNSPD). NE. 0) GO TO 1000
CALL DDCOM(KS, SUMO, SUMi. XESTO. XE8Tl, 3DERROR. ERRATE)
CALL STDCOM(KS. SUMS. 9F8K0, FBKI,B99.ERRORS. ERRATS)
PHEED36O. *PHEEO/ (2. *4. *ATAN( 1.))
IF(MOD(IB, NPRNT). EQ. 0) WRITE(6. 100) ID. ERROR. ERRATE. ERRORS. ERRATS

i. PHEEOD. MEAN. VARANS
100 FORMAT (2X, 15. 5Ei18. 6. 2Ei13. 6)

1000 CONTINUE
CALL GTIM(JTIME)
CALL TIMASC(JTIMt. STRNQ)
WRITE(6.7273) (STRNG(!I), 11-1.9)

7273 FOPPIAT(IX. 'TIME IS ',9A1)
REWIND 6

2000 CONTINUE 64
STOP ________



BLOCK DATA
COMMON/SEED/IX8.JXS. IXJI.JXJl, IXJ2.JXJ2. IXNlJXNl. IXN2,JXN2
COMMON/SAMPLE/NSPB. TB
COMMON/OPT ION/NOS
COMMON/DELAY/DELPHI. DELMEG
COMMON/SIQDISIGMAJ. SI OMAN
COMMON/PHASE/PHEES. PHEEO
COMMON/COLORD/PHIDJ. PHIOJ. GAIDJ. OAMOJ
COMMON/ODD /ENODB. SJRDB
COt'WON/PLLFLT/BNP. ESP. DELF
COMMON/FREJ/FJ
COMPION/PHASIN/HO. P. Z.K!.KG, PHASP, PHASG
REAL KI#KQ
COMMON/TRACK/GAMMA(4. 4), PHEE(4. 4)
INTEGER*2 IXI(2).JX1(2),1X2(2),JX2(2),1X3(2).JX3(2)..1X4(2).JX4(2)

l.1X5(2).JX5(2)
INTEGER*4 ZXS. JXS. IXJ1. JXJZ. IXJ2. JXJ2. IXNI. JXN1. IXN2. JXN2
EQUIVALENCE (IXSIX1). (JXSJX1). (IXJ1IX2). (JXJ1.JX2),(IXJ2,1X3)
1, (JXJ2,.JX3) (IXN1. 1X4), (JXNI.JX4). (IXN2,1X5), (JXN2,JX5)
DATA IXI, JX1/"136303, "053354. "041256. "141560/
DATA IX2, JX2. 1X3, JX3/" 176303. "037702. "141238. "056407.

1 "125537. "103453, "055052, "032461/
DATA 1X4, .JX4. IXS. JX5/"034313. "103400, "021165, "104262.

1 "072063, "122078.,"016415, "041540/
END

C
SUBROUTINE INPUT
COMMON/SAMPLE/NSPB, TB
COMMON/OPTION/NOS
COMMON/DELAY/DELPHI. DELMEG
COMMON/PHASE/PHEES. PHEEO
COMMON/FREGJ/FJ
CO)MMON/ODD /ENODB. SJRDB
COMMON/PLLFLT/BNP. ESP. DELF
COMMON/PHASIN/HO, P, ZKRIKG. PHASP. PHASO
READ(5.1) NSPB.TB
READ(5. 1) NOS.DELPHI
READ(5. 2) ENODD. SJRDB
PHEES-.

C INITIALIZE PI4EES AS PHEEO
PHEEOO.
READ(5.2) FJ#HO
READ(5.3) BNP

1 FORMAT(I5.E15.6)
2 FORMAT(2E15. 6)
3 FORMAT(E15. 6)
RETURN
END

C SUBROUTINE INIT(XJI. XJG. XEBTO. XEST1. VESTO. VESTI. XPI. XPG. VCO

1. ERROR. ERRORS, MEAN, VARANS)
COPIMON/SAMPLE/NSPB, TB
COMMON/OPT ION/NOB
COMMON/DELAY/DELPHI. DELMEG
COMMON/SIGMA/SIMAJ.SIGMAN
COMMON/ODD /ENODD. SJRDB
COMMON/PLLFLT/DNP, ESP, DELF
COMMON/FREQJ/FJ
COMMON/COLRD/PHIDJ.PHIOJ, OAMOJ. OAMOJ
COPMN/PHASE/PHEES. PHEEO
COMMON/PHASIN/HO. P.Z, RI.KG. PHASP. PHASO
REAL K I, KG, MEAN
COMMON/TRACK/GAMMA(4. 4). PHEE(4. 4) 6
DIMENSION XESTO(4),XEST1(4),VESTO(4,4),VE8T1(4,4) 6



PI-4.*ATAN(1.)
DELMEG-DELPHI*2. *P I/TB
IF(NOS.EQ.l) GO TO 10
SUMF-0.
DO 15 IK-1,NSPB

15 SUMF-SUMF+(SIN( (Il-. 5)*TB*DELMEG/NSPB) )**2
SIGMAN-SRT(SUMF)*10. **(-ENODB/20.)
GO TO 20

10 CONSTP-SGRT(NSPB/2. )*ADS(SIN(DELPHI))
SIGMAN-CONSTP*10. **(-ENODD/20.)

20 SIGMAJ-1O.**(-SJRDB/20. )/SQRT(2.)
C GENERATE THE COLOURED NOISE PARAMETERS AND ITS BANDWIDTH
C of THE RHO-FILTER AND ITS BANDWIDTH

T-TB/NSPD
POLEJfr-2. *PI*FJ
PHIDJ-EXP (POLEJ*T)
QAM-(PHIDJ-1. )/POLEJ
GAINK-1. /SGRT(GAM**2/(1. -PHIDJ**2))
GAMDJ-GAINK*GAM
PHIOJ-0.
GAMOJ-.
BNJ---POLEJ/4.

C
BNR-BN
POLER=-4. *BNR
PHI DR=EXP (POLER*T)
QAM-(PHIDR-1. )/POLER
QAINK=1. /SORT (GAM**2/ (I. -PHIDR**2))
GAMDR=GA IWN*GAM
PHIOR=0.
GAMOR-0.
DO 50 1-1.4
DO 50 J-1.4
GAMMA( I.J)mQ.

50 PHEE(IJ).
GAIIMA(1. 1)-GAMDR
QAMMA(2. 2)-GAMDR
GAIIMA(3. 3)=GAIIDJ
QAMMA(4. 4)-GAMDJ
PHEE(1. 1)-PHIDR
PHEE(2. 2)-PHIDR
PHEE(3. 3)-PHIDJ
PHEE(4. 4)-PHIDJ

C GENERATE THE PHASE ESTIMATOR PARAMETERS
C A=2.*PI*ESP/360.
C TANHO-SIN(A)/COS(A)
C HO=(2. *PI*DELF)/TANHO

K~kn(B. /3. )*BNP
Z=-(4. /3. )*DNP
P-KG*Z /HO
V I-P/ Z
PHASP-EXP (P*T)
PHASG-(PHASP-1. )/P

C
C INITIALIZATION

XJ -0.

XPI-1./(l(-)
vCO-0.
DO 60 1-1,4
XESTO(lI)inO.

60 XEST1(I)nO.
DO 65 1-1,4 66
DO 65 J-1,4



6IF(I.EG.J) VESTO(IJ)-1.
6CONTINUE
DO 70 1-1,4
DO 70 J-1.4

70 VEST1(I.J)-VESTO(I.J)
ERRORO.
ERRORS-0.
PHEEO=0.
MEANO0.
VARANSO0.

C
WRITE(6. 99) ENODB. SJRDB

99 FORtIAT(2X. 6HENODB-,E13. 6, 5X.6HSJRDB-. E13. 6/)
WRITE(6. 100) NOS. NSPBD TB. DELPHI. PHEES

100 FORtIAT(2X. 4HNOS. 12. 5X.5HNSPD, 155 X.3HTD, E13. 6.5X
1,7HDELPH1-,E13. 6.5X.6HPHEES-.E1. 8.1)
WRITE(6. 101) GAMDJ. PHIDJ. DNJ

101 FORMATC5X. 6HGAMDJ. E13. 6., 6HPHIDJ-. E13. 6. X, 4HBNJ-,El3. 6)
WRITE(8. 102) GAMDR. PHIDR. BNR

102 FORMAT(5X, 8HGAMDR- E13. 6. 5X.6HPHIDR-.E13. 6, SX.4HDNR-sE13.6)
WRITE(6. 103) PHASG,PHASP.BNP

103 FORMAT(5X# 6HPHASG= E13. 6. 5X.6HPHASP-,E13. 6, SX.4HDNP-, E13.6)
WRITE(6. 105) HO. P. Z.K!.KG

105 FORIIAT(2X. 18HPARAMETERS IN VCO-,I, 5X, SHH(0). E13. 6.5X.2HP-.E13. 6
1. SX.2HZ-,E13.6,SX.3HKI-.E13.6. 5X.3HKG-,E13.6, /I/)
REWIND 6
RETURN
END

C
SUBROUTINE SIQNAL(KSBB.SISQ)
COMMON/SEED/IXS. JXS. IXJ1. JXJ1. IXJ2. JXJ2. IXN1. JXN1. !XN2. JXN2
INTEGER*4 IXS. JXS. IXJ1. JXJI. IXJ2, JX.J2. IXN1.JXNI. IXN2, JXN2
COMMON/SAMPLE/NSPB, TB
COhhMON/OPTON/OS
COMIION/PHASE/PHEES. PHEED
COMMl#ON/DELAY/DELPHZ, DELMEG
IF(MOD(KS-1.NSPB). NE. 0) GO TO 10
CALL RANC( IXS, JXS. GB)
BB-AINT(GB+. 5)

10 C=1. -2*BD
TK=(KS-. 5)/NSPB
TK10D-(TK-IFIX(TK) )*TB
A=l1.
GO TO (1.2) NOS

1 PHEEM-DELPHI*C
GO TO 20

2 PHEEM-DELMEG*C*TKMOD
20 SI=A*COS (PHEEM+PHEES)

SQ-A*S IN (PHEEM+PHEES)
RETURN
END

C
SUBROUTINE RFI(KS, XJI. XJQ, YI, O)
COIIMON/SEED/1X8. JXS. IXJI. JXJ1, IXJ2, JXJ2, IXNI, JXN1, IXN2. JXN2
INTEGER*4 IXS. JXS, IXJ1, JXJ1. IXJ2, JXJ2. IXNI. JXNI. IXN2, JXN2
COMMON/COLORD/PHIDJ. PHIOJ. GAMhD.J, GAMOJ
COMMON/SIGMA/SIGMAJ.SIOIIAN
REAL NIsNQ
CALL MARSA(IXJ1,JXJ1.WI)
CALL MARSAC IXJ)2.JXJ2. WO)
CALL MARSA(IXNI. JXN1. NI)
CALL MARBA( IXN2# JXN2 NOb)
XJZIm-PHIDJ*XJI+PHIOJ*XJG.GAMDJ*WI+GAMOJ*WO
XJO1--PHIOJ*XJI +PHIDJ*XJQ-GAM1OJ*WIQAMDJ*WQ 67
YX-SGAJ*XJX+SGIAN*Nl



YG-SIGMAJ*XJ(*+51(MAN*NU
xJI-xJI1

RETURN
END

C
SUBROUTINE DATA(SI.SQYIYG.ZIZQ)
COMMON/PHASE/PHEES. PHEEO
zI=sI+YI
ZQ-SG+YQ
ZI-ZI*COS(PNEEO)+ZQ*SIN(PHEEO)
ZQ--ZI*SIN(PHEEO) +ZG*COS(PHEEO)
RETURN
END

C
SUBROUTINE VCOUT(KS ZI. ZQ,.XPI. XPQ. VCO.MEAN. VARANS)
COMMON/SAMPLE/NSPB. TB
COMMON/PHA8E/PHEES. PHEEO
COIIMON/PHASIN/HO. P. Z1 KI, KI, PHASP. PHASO
REAL KI KG, MEAN
XPQI-PHASP*XPQ+PHASQ*ZG
ZQ1-KQ*( (P-Z)*XPG+ZG)
xPQ-xPQ1
XPK 1=PHASP*XPI+PHASG*ZI
ZII=Kl*( (P-Z)*XPI+Zl)
xpI-xpI1

T-TB/NSPB
PHEEO-PHEEO+ (VCOP 1+VCO) *T/2.
VCO=VCoP 1

C ESTIMATE THE MEAN AND VARIANCE OF THE PHASE ERROR, RECURSIVELY
PHEODn36O. *PHEEO/ (2. *4. *A'AN( I.))
MEAN- ((KS-I. )*ME-AN+PHEEOD) /KS
EVAR-(PHEEOD-MEAN )**2
VARANS ((KS-I. )*VARANS+EVAR ) RS
RETURN
END

C
SUBROUTINE REFGEN(KS. M.FTR. GTR. HM)
COMMON/SAMPLE/NSPB. TB
COMMON/DELAY/DELPHI, DELMEG
COMMON/OPT ION/NGS
DIMENSION HM(2,2)
TK-(KS-. 5)/NMB
TKMOD-(TK-IFIX(TK) )*TD
AR-I.
IF(NOS.NE.1) GO TO I
IF(M. EQ. 0) PHEEMR-DELPHI
IF (M. EG. ) PHEEMR=-DELPHI
GO TO 2

1 IF(M. EQ. 0) PHEEMR-DELMEQ*ThMOD
IF(M. EQ. 1) PHEEMR=-DELMEG*TKMOD

2 FTR-AR*CCS (PHEEMR)
GTR-AR*SIN(PHEEMR)
HM(1. l)iCOS(PHEEMR)
HM( 1.2)-SIN(PHEEMR)
1*1(2 1)-SIN(PHEEMR)
HM(2. 2)--COS(PHEEMR)
RETURN
END

C
SUBDROUTINE KALMAN(KS. ZI. ZO.HMVEST. XEST.GAIN. VARINV, DET. V)
COMMON/TRACK/GAMMA(4. 4). PHEE(4. 4)
COMMION/8ZQMA/SXG1AJ, SIGMAN
DIMENSION VEST(4,4),PVP(4,4),GTG(4o4).VPRED(4,4),VHT(4,2) 68
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DT19MrWVNN(2, 2)
REAL 1?1GH(44)
DIMENSION XEST(4),XPREDC4),HXPRED(2),V(2),GV(4),HX(2,4)
DO 1 1-1,2
DO 1 J-1,2

1 HX(I.J)-HM(IJ)
HX(l. 3)-SIGIIAJ
HX(o 0.4-0.
HX (2s 3)-0.
HX(2. 4)-SIGMAJ
VNNC1. 1)-SIGMAN**2
VNN(1,2)-0.
VNN(2. 1) -0.

* VNN(2. 2)=SIGMAN**2
C CALCULATE THE STEADY-STATE KALMAN GAIN

CALL MADCT(PHEE. 4,4. VEST. 4.PHEE. 4, PYP.4,4.4.4,4,4,4.4)
* ~CALL MATMUL(2, GAMMA. 4.4.GAMMA. 4, QTG. 4.4.4.4.4.4)

CALL MATAS(1, PYP.4,4. GTG. VPRED, 4,4)
CALL MADCT(HX. 2. 4.VPRED. 4, HX. 2.HVHT. 2. 4.4,4.2. 4. 2.2)
CALL MATAS( 1.HVHT. 2.2.VNN. VAR. 2.2)
DET-VAR(1, 1)*VAR(2,2)-VAR(1,2)*VAR(2, 1)
VARINV(1. 1)=VAR(2.2)/DET
VARINV(1, 2)=-VAR(1#2)/DET
VARINV(2. 1)=-VAR(2. 1)/DET
VARINV(2,2)=VAR(1. 1)/DET
CALL MATMULC2. VPRED. 4,4. HX.2. VHT. 4,4,2,4.4.2)
CALL MATMUL( 1.VHT, 4.2.VARINV. 2.GAIN. 4,2.2.2.4.2)
CALL MATMUL(1.GAIN,4.2.HX,4.GH,4,2.2,4,4,4)
DO 10 1-1,4
DO 10 J-1.4
IMGH( I.J)=-GH(I. J)
IF(I.EQ.J) JMQH(I.J)=1. -GH(X.J)

10 CONTINUE
CALL MATMUL(i. IMGH. 4,4,VPRED. 4.VEST. 4,4.4.4,4,4)

CALL MATVEC(PHEE. 4.4.XEST. XPRED, 4.4)
CALL MATVEC(HX. 2. 4.XPRED. HXPREDI 2.4)
V( 1)=ZI-HXPRED( 1)
V(2)=ZQ-HXPRED(2)

CALL MATVEC(QAIN. 4,2. V.GV, 4.2)

CALL VECAS(i. XPRED.GV. XEST,4)

END
C

SUBROUTINE COST(KS, V.VAR INY,DETSUM)
COMMON/SAMPLE/NSPB. TB
DIMENSION V(2),VARINV(2,2)
IF(MOD(KS-1,NSPB). EG.0) SUM-O.
ARG--ALOG(DET)-(V(1)**2*VARINV(1, 1)+V(2)**2*VARINV(2,2)
1+V(1)*V(2)*(VARINV(1,2)+VARXNVC2, 1)))
SUM-SUM+ARG
RETURN
END

* C
SUBROUTINE STAND(KS, ZI. ZO.SUM.FTRO. GTRO, FTR1, OTRI
1. AFSM0. AFSK1. BFSKO. DFSK1. SFSKOSFSK1)
COMMON/SAMPLE/NSPD. TB
COMMON/OPT ION/NOS
GO TO (1, 2)#NOS

I IF(MOD(KS-1,NSPB).EG.O) SUMO.
SUI-SUM+ZQ
RETURN

2 IF(MOD(IKS-1,NSPD).NE.0) GO TO 20
AFSKOnO.
AFSKI-O. 69
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20 AFSKO-AFBKtO+Z I*FTRO+ZG*GTRO
AFSK1-AFSK1+Z I*FTRI.ZG*GTR 1
BFBIK0aDFSKO+Z I*GTRO-ZQ*FTRO
BFBK1-BFSK1*ZI4IGTR 1-ZQ*FTR 1
IF(MOD(KS.NSPB).NE. 0) RETURN
SFSKO-AFSKO**2+BFSKO**2
SFSK 1-AFSK 1**2+BFSK 1*412
RETURN
END

C
SUBROUTINE DDCOM(KS. SUIO, SUMi, XESTO, XESTI,B99,ERROR. ERRATE)
COMMON/SAMPLE/NSPB, TB
DIMENSION XESTO(4). XEST1(4)
IF(SUtlO.GT.SUMI) GO TO 10
DDHAT-1.
DO 1 1-1.4

1 XESTO(I)-XEBT1(I)
GO TO 20

10 DBHAT-O.
DO 2 1-1,4

2 XEST1(I)-XESTO(I)
20 IF(DB. EQ. DIHAT) ERRO0.

IF(DD. NE. DDHAT) ERR=1.
ERROR-ERROR+ERR
IB-1+IFIX((4S-. 5)/NSPD)
ERRATE-ERROR/ IB
RETURN
END

C
SUBROUTINE STDCOM(KS, SUM, SFSKO, SFSK1. 3D.ERROR, ERRATE)
COMMON/SAMPLE/NSPD .TB

COMIION/OPTION/NOS
GO TO (1#2),NOS

1 IF(SUM. GE. 0.) DDHATO.
IF(SUI. LT.0. ) DDHAT=1.
GO TO 10

2 IF(SFSK0.GT.SFSKI) BBHAT-O.
IF(SFSK1. OT. SFSKO) BDHATi1.

10 IF(DD. EQ. BBHAT) ERR=0.
IF(DD. NE. DDHAT) ERR-I.
IBinl+IFIX( (KS-. 5)/NSPB)
ERROR-ERROR+ERR
ERRATE-ERROR/ IB
RETURN
END

C
SUBROUTINE NARSAC IXA. JXA, V)
INTEGER*4 IXA,JXA
CALL RANCCIXA.JXA. Xl)
CALL RANCCIXA. JXA. X2)
Xlin(XI-.5)412.
X2in(X2-. 5)412.

5 W-XI**2*X2**2
IF(W.LE. 1.) GO TO 10
CALL RANC(IXA. JXA. Xl)
CALL RANC( IXA. JXA, X2)
X1-(X1-. 5)42.
X2in(X2-. 5)*2.
GO TO 5

10 XX-XI*SMT(-2.*ALOO(W)/W)
V-X2*XX/Xl
RETURN
END
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